Solution of Homework 3

12th Dec 2007

If you have any question related to this homework, please send me e-mail(hongshin@gmail.com).

1

Preticate logics are (a), (b), (d), (f), (g).
For wrong strings, (c) is not a predicate but a term because f is a function. In (e) and (h), B(m) and B(x) are not a term because B is a predicate.

2
(a) $\forall p .(P(x) \rightarrow A(m, x))$
(b) $\exists p .(P(x) \wedge A(x, m))$
(c) $A(m, m)$
(d) $\neg \exists x .(S(x) \wedge(\forall y \cdot B(x, y)))$
(e) $\neg \exists l .(L(l) \wedge \forall s .(S(s) \rightarrow B(s, l)))$
(f) $\neg \exists l .(L(l) \wedge \neg \exists s .(S(s) \wedge B(s, l)))$

3

Predicate logics are (c) and (f).
Parse tree of (c) is like below.
Parse tree of (f) is like below. For wrong strings,
In (a), (b), and (d), the number of arguments of P is incorrect.
In (e), g is not a predicate but a function. Therefore $g(x, y)$ can not be used as a predicate formula.

4
(a) $\forall x .(F(x) \rightarrow \exists y \cdot(Q(y, x)))$
(b) $B(j, c) \rightarrow \neg \exists y .(F(y) \wedge L(j, y))$
(c) $\exists x \cdot(F(x) \wedge B(c, x) \wedge B(x, j))$

5
$\operatorname{Red}(x): x$ is red.
$B o x(x): x$ is in the box.
(a) $\forall x \cdot(\operatorname{Red}(x) \rightarrow \operatorname{Box}(x))$
(b) $\forall x \cdot(\operatorname{Box}(x) \rightarrow \operatorname{Red}(x))$
$\operatorname{Animal}(x): x$ is an animal.
$\operatorname{Cat}(x): x$ is a cat.
$\operatorname{Dog}(x): x$ is a dog.
$(\mathrm{c}) \neg \exists x .(\operatorname{Animal}(x) \wedge C a t(x) \wedge \operatorname{Dog}(x))$
$\operatorname{Boy}(x): x$ is a boy.
$\operatorname{Prize}(y): y$ is a prize.
$W o n(x, y): x$ wons y.
(d) $\forall x .(\operatorname{Prize}(x) \rightarrow \exists y \cdot(\operatorname{Boy}(y) \wedge \operatorname{Won}(y, x)))$
(e) $\exists x \cdot(\operatorname{Boy}(x) \wedge \forall y \cdot W o n(x, y))$

6
(a) $\forall x \cdot \exists y \cdot M(y, x)$
(b) $\forall x \cdot(\exists y \cdot M(y, x) \wedge \exists z \cdot F(z, x))$
(c) $\forall x \cdot((\exists y \cdot M(y, x)) \rightarrow(\exists z \cdot F(z, x)))$
(d) $\exists x \cdot \exists y \cdot(F(E d, y) \wedge F(y, x))$
(e) $\forall x \cdot((\exists y \cdot F(x, y)) \rightarrow \exists z \cdot H(x, z))$
(f) $\forall x . \exists y .(H(x, y) \rightarrow \exists c .(F(x, c) \wedge M(y, c)))$

If you clearly define the meaning of (e) and (f) and specify them correctly, then it is okay.
(g) $\neg \exists u, m, f, x .(F(f, x) \wedge B(f, u) \wedge M(m, x) \wedge S(m, u))$
(h) $\forall x \cdot \exists y \cdot(B(x, y) \rightarrow \exists f \cdot(F(f, x) \wedge F(f, y)))$
(i) $\neg \exists g, m, x .(M(m, x) \wedge M(g, m) \wedge \exists a \cdot F(g, a))$
(j) $H(E d$, Patsy $)$
(k) $\exists h .(H(h$, Monique $) \wedge B(h, C a r l))$

7

$\operatorname{Visit}(x, y): x$ visited y.
$\operatorname{Love}(x, y): x$ loves y.
(a) $\forall x .(\operatorname{visit}(x$, NewOrleans $) \rightarrow \operatorname{Love}(x$, NewOrleans $))$
$\operatorname{Play}(x, y): x$ plays y.
$\operatorname{LiveIn}(x, y): x$ lives in y.
$\operatorname{Like}(x, y): x$ likes y.
(b) $\exists x .($ Play $(x$, Trumphet $) \wedge \operatorname{LiveIn}(x$, NewOrleans $) \wedge \neg \operatorname{Like}(x$, crawfishetouffee $)$.
$\operatorname{BornIn}(x, y): x$ born in y.
$\operatorname{Better}(x, y, z): x$ plays y better than z.
(c) $\exists p, q \cdot(p \neq q \wedge \operatorname{BornIn}(p$, NewOrleans $) \wedge \operatorname{BornIn}(q$, NewOrleans $) \wedge$ Play $(p$, Saxophone $) \wedge$
$\operatorname{Play}(q, \operatorname{Saxophone}) \wedge \forall x .(\operatorname{LiveIn}(x$, NewYork $) \wedge \operatorname{Play}(x$, Saxophone $) \wedge \operatorname{Better}(p$, Saxophone,$x) \wedge$ $\operatorname{Better}(q$, Saxophone, $x))$)

8

$M=(\{0,1\},\{\{Q\},\{g\}\},\{ \})$
where $g=\{(0,0,0),(0,1,0),(1,0,0),(1,1,0)\}$ and $Q=\{(0,0,0)\}$
$M^{\prime}=(\{0,1\},\{\{Q\},\{g\}\},\{ \})$
where $g=\{(0,0,0),(0,1,0),(1,0,0),(1,1,1)\}$ and $Q=\{(0,0,0)\}$
and $l(x)=1, l(y)=1, l(z)=0, l^{\prime}(x)=1, l^{\prime}(y)=1, l^{\prime}(z)=0$.

9

(a) For any interpretation of $x, M \models_{l} \phi$ if $l(y)=x+1$ and $l(z)=x$.

Therefore $M \models \phi$.
(b) For any interpretation of $x, M^{\prime} \models_{l} \phi$ if $l(y)=2 * x$ and $l(z)=x$.

Therefore $M \models \phi$.
(c) For any interpretation of $x, M^{\prime \prime} \models_{l} \phi$ if $l(y)=x+1$ and $l(z)=x$.

Therefore $M \models \phi$.

10
$M=(N,\{\neq\},\{ \})$
$M^{\prime}=(N,\{\equiv\},\{ \})$

11

$\phi=\forall x \cdot(\exists y \cdot P(x, y) \wedge(\exists z \cdot(P(z, x) \rightarrow \forall y \cdot P(x, y))))$.
A model of choice is $M=\{\{0,1,2\},\{P\},\{ \}\}$ where $P^{M}=\{(0,1),(1,1),(2,1)\}$.
To prove $M \models \phi$,
$l[x \mapsto 0], M \models_{l} \phi$ if $M \models_{l} \exists y \cdot P(0, y) \wedge(\exists z \cdot(P(z, 0) \rightarrow \forall y \cdot P(0, y)))$
$l[x \mapsto 0, y \mapsto 0], M \not \vDash_{l} P(0,0)$ so $M \not \vDash_{l} \phi$.
$l[x \mapsto 0, y \mapsto 1], M \models_{l} \phi$ if $M \models_{l} \exists z .(P(z, 0) \rightarrow \forall y . P(0, y)$.
$l[x \mapsto 0, y \mapsto 1, z \mapsto 0], M \models_{l} P(0,0) \rightarrow \forall y \cdot P(0, y)$.
$l[x \mapsto 1, y \mapsto 0], M \not \vDash P(1,0)$ so $M \not \vDash_{l} \phi$.
$l[x \mapsto 1, y \mapsto 1], M \models_{1} \exists z .(P(z, 1) \rightarrow \forall y \cdot P(1, y)$
$l[x \mapsto 1, y \mapsto 1, z \mapsto 0], M \models_{l} \phi$ if $M \models_{l} \forall y . P(1, y)$
$l\left[x \mapsto 1, y \mapsto 1, z \mapsto 0, y^{\prime} \mapsto 0\right], P(1,0)=$ false.
$l[x \mapsto 1, y \mapsto 1, z \mapsto 1], M \models_{l} \phi$ if $M \models_{l} \forall y . P(1, y)$
$l\left[x \mapsto 1, y \mapsto 1, z \mapsto 1, y^{\prime} \mapsto 0\right], P(1,0)=$ false.
$l[x \mapsto 1, y \mapsto 1, z \mapsto 2], M \models_{l} \phi$ if $M \models_{l} \forall y . P(1, y)$
$l\left[x \mapsto 1, y \mapsto 1, z \mapsto 2, y^{\prime} \mapsto 0\right], P(1,0)=$ false.
$l[x \mapsto 1, y \mapsto 2], M \not \models P(1,2)$ so $M \not \neq l_{l} \phi$.
Therefore, $M \not \vDash \phi$.

12

(a) 12
(b) 69
(c) 3728

13

(a) $M \models \phi$ does not hold for an interpretation where $l(x)=b$ and $l(y)=a$.
(b) $M \models \phi$ holds for any intepretation. If $l(x)=b$ then $l(y)$ only can be c and $\exists z \cdot R(c, z)$ holds for the model. If $l(x)=a$ then $l(y)$ only can be b and $\exists z \cdot R(b, z)$ holds for the model. Finally, if $l(x)=c$ then $l(y)$ only can be b and $\exists z \cdot R(b, z)$ holds for the model.

14

(a) $M=\{\{0,1\},\{S, P\},\{ \}\}$ where $S^{M}=\{(0,1),(1,0)\}$ and $P^{M}=\{0\}$.
(b) $M=\{\{0,1,2\},\{S\},\{ \}\}$ where $S^{M}=\{(0,1),(1,2),(0,2)\}$.
(c) $M=\{\{0,1,2\},\{R, Q, P\},\{ \}\}$ where $R^{M}=\{0\}, Q^{M}=\{0,1\}$ and $P^{M}=$ $\{2\}$.
(d) $M=\{\{0,1\},\{S\},\{ \}\}$ where $S^{M}=\{(0,0),(1,1)\}$.

15
(a) Not Valid. $M=\{\{0,1\},\{P\}\{ \}\}$ where $P^{M}=\{0\}$.
(b) Not Valid. $M=\{\{0,1\},\{P, Q\}\{ \}\}$ where $P^{M}=\{0,1\}$ and $Q^{M}=\{0\}$.
(c) Valid.
(d) Valid.

16
(a) $M=\{\{0,1\},\{S\},\{ \}\}$ where $S^{M}=\{(0,0),(1,1)\}$.
(b)If $\forall x \cdot P(x)=T$, then it is obvious that $\exists y \cdot P(y)=T$ and therefore the formula is true. Otherwise, the formula is true because false $\rightarrow \exists y . P(y)$ is always true..
(c)and(d)by logical equivalence(p. 108 in textbook).
(e) $M=\{\{0,1,2\},\{S\},\{ \}\}$ where $S^{M}=\{(0,2)\}$.
(f) $M=\{\{0,1\},\{S\},\{ \}\}$ where $S^{M}=\{(0,0)\}$.

17
U_{1} is a poset which has either common lowest element or common highest ele$\operatorname{ment}\left(\right.$ e.g. $\left.U_{1}=\{(a, b),(b, c),(c, d),(e, f),(f, g),(g, c)\}\right)$.
U_{2} is a poset which has neither common lowest element nor common highest element. So the set can be decomposed into independent element sets(e.g. $\left.U_{2}=\{(a, b),(b, c),(c, d),(e, f),(f, g),(g, h)\}\right)$.

18

$\mathrm{M}=(D,\{\{G,=\},\{o p\}\},\{ \})$

- Associativity $\forall a, b, c .(G(a) \wedge G(b) \wedge G(c) \wedge(=(o p(a, o p(b, c)), o p(o p(a, b), c))))$
- Identity element
$\exists i .(G(i) \wedge \forall a .(G(a) \rightarrow=(o p(i, x), o p(x, i))))$
- Inverse element
$\exists i .((G(i) \wedge \forall a .(G(a) \rightarrow=(o p(i, x), o p(x, i)))) \wedge \forall x .(G(x) \rightarrow \exists y \cdot(G(y) \wedge=$ $(i, o p(x, y)))))$

19

$I_{1}=0<1<2<3 \ldots$ and $I_{2}=0 \triangle 2 \triangle 4 \triangle 6 \ldots \triangle 1 \triangle 3 \triangle 5 \ldots$
$\phi_{o p}=\forall x .((0$ op $x) \rightarrow \forall y . \neg(y$ op $x))$ and $\neg \phi_{o p}=\exists x .((0$ op $x) \wedge \exists y .(y$ op $x))$.
Then, $I_{1} \models \phi_{<}$and , $I_{2} \not \vDash \phi_{\triangle}$.

