Temporal Logic (2/2)

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

1

Semantics of LTL (3/3)

- Def 3.8 Suppose $\mathcal{M} = (S, \rightarrow, L)$ is a model, $s \in S$, and ϕ an LTL formula. We write $\mathcal{M}, s \models \phi$ if for every execution path π of \mathcal{M} starting at s, we have $\pi \models \phi$
 - If \mathcal{M} is clear from the context, we write $\mathbf{s} \models \phi$
- Example
 - $s_0 \models p \land q$ since $\pi \models p \land q$ for every path π beginning in s_0
 - $\mathbf{s}_0 \models \neg \mathbf{r}, \, \mathbf{s}_0 \models \top$
 - $s_0 \vDash X r, s_0 \nvDash X (q \land r)$
 - $s_0 \models G \neg (p \land r), s_2 \models G r$
 - For any s of \mathcal{M} , s \vDash F(\neg q \land r) \rightarrow F G r
 - Note that s_2 satisfies $\neg q \land r$
 - s₀ ⊭ G F p

Intro. to Logic

CS402 Fall 2007

KAIST

- $s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \dots \models G \models p$
- $\bullet \ \mathsf{s}_0 \to \mathsf{s}_2 \to \mathsf{s}_2 \to \mathsf{s}_2 \dots \nvDash \mathsf{G} \mathsf{F} \mathsf{p}$
- $s_0 \models G F p \rightarrow G F r$
- $\bullet \ \ s_0 \nvDash G \ \ F \ r \rightarrow G \ \ F \ p$

2

Practical patterns of specification

- For any state, if a request occurs, then it will eventually be acknowledge
 - G(requested → F acknowledged)
- A certain process is enabled infinitely often on every computation path
 - G F enabled
- Whatever happens, a certain process will eventually be permanently deadlocked
 - F G deadlock
- If the process is enabled infinitely often, then it runs infinitely often
 - G F enabled \rightarrow G F running
- An upwards traveling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor
 - G (fllor2 ∧ directionup ∧ ButtonPressed5 → (directionup U floor5)

- It is impossible to get to a state where a system has started but is not ready
 - $\phi = \mathbf{G} \neg (\mathbf{started} \land \neg \mathbf{ready})$
 - What is the meaning of (intuitive) negation of ϕ ?
 - For every path, it is possible to get to such a state (started ∧¬ready).
 - There exists a such path that gets to such a state.
 - we cannot express this meaning directly

LTL has limited expressive power

- For example, LTL cannot express statements which assert the existence of a path
 - From any state s, there exists a path π starting from s to get to a restart state
 - The lift can remain idle on the third floor with its doors closed
- Computation Tree Logic (CTL) has operators for quantifying over paths and can express these properties

Summary of practical patterns

Gр	always p	invariance
Fр	eventually p	guarantee
p ightarrow (F q)	p implies eventually q	response
$p \rightarrow$ (q U r)	p implies q until r	precedence
GFp	always, eventually p	recurrence (progress)
FGp	eventually, always p	stability (non- progress)
$F p \rightarrow F q$	eventually p implies eventually q	correlation

Equivalences between LTL formulas

- Def 3.9 $\phi \equiv \psi$ if for all models \mathcal{M} and all paths π in \mathcal{M} : $\pi \vDash \phi$ iff $\pi \vDash \psi$
- $\neg \mathbf{G} \phi \equiv \mathbf{F} \neg \phi, \neg \mathbf{F} \phi \equiv \mathbf{G} \neg \phi, \neg \mathbf{X} \phi \equiv \mathbf{X} \neg \phi$
- $\neg (\phi \cup \psi) \equiv \neg \phi \mathsf{R} \neg \psi, \neg (\phi \lor \psi) \equiv \neg \phi \cup \neg \psi$
- $F(\phi \lor \psi) \equiv F\phi \lor F\psi$
- G ($\phi \land \psi$) = G $\phi \land$ G ψ
- $\mathbf{F} \phi \equiv \mathbf{T} \mathbf{U} \phi, \mathbf{G} \phi \equiv \bot \mathbf{R} \phi$
- $\phi \cup \psi \equiv \phi \cup \psi \wedge F \psi$
- $\phi W \psi \equiv \phi U \psi \lor G \phi$
- $\phi W \psi \equiv \psi R (\phi \lor \psi)$
- $\phi \mathsf{R} \psi \equiv \psi \mathsf{W} (\phi \land \psi)$

Adequate sets of connectives for LTL (1/2)

• X is completely orthogonal to the other connectives

- X does not help in defining any of the other connectives.
- The other way is neither possible
- Each of the sets {U,X}, {R,x}, {W,X} is adequate

$$\{U,X\}$$

$$\phi \ R \ \psi \equiv \neg (\neg \phi \ U \neg \psi)$$

$$\phi \ W \ \psi \equiv \psi \ R \ (\phi \lor \psi) \equiv \neg (\neg \psi \ U \neg (\phi \lor \psi))$$

$$\{R,X\}$$

$$\phi \ U \ \psi \equiv \neg (\neg \phi \ R \neg \psi)$$

$$\phi \ W \ \psi \equiv \psi \ R \ (\phi \lor \psi)$$

$$\{W,X\}$$

$$\phi \ U \ \psi \equiv \neg (\neg \phi \ R \neg \psi)$$

$$\phi \ R \ \psi \equiv \psi \ W \ (\phi \land \psi)$$

Adequate sets of connectives for LTL (2/2)

- Thm 4.10 $\phi \cup \psi \equiv \neg (\neg \psi \cup (\neg \phi \land \neg \psi)) \land F \psi$
- Proof: take any path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ in any model
 - Suppose $s_0 \vDash \phi \cup \psi$
 - Let n be the smallest number s.t. $s_n \models \psi$
 - We know that such n exists from $\phi \cup \psi$. Thus, $s_0 \models F \psi$
 - For each k < n, $s_k \vDash \phi$ since $\phi \cup \psi$
 - We need to show $s_0 \vDash \neg(\neg \psi \cup (\neg \phi \land \neg \psi))$
 - case 1: for all i, $s_i \nvDash \neg \phi \land \neg \psi$. Then, $s_0 \vDash \neg (\neg \psi \cup (\neg \phi \land \neg \psi))$
 - case 2: for some i, $s_i \models \neg \phi \land \neg \psi$. Then, we need to show
 - (*) for each i >0, if $s_i \models \neg \phi \land \neg \psi$, then there is some j < i with $s_i \nvDash \neg \psi$ (i.e. $s_i \models \psi$)
 - Take any i >0 with s_i ⊨ ¬φ ∧ ¬ψ. We know that i > n since s₀ ⊨ φ U ψ. So we can take j=n and have s_i ⊨ ψ
 - Conversely, suppose $s_0 \vDash \neg (\neg \psi \cup (\neg \phi \land \neg \psi)) \land F \psi$
 - Since $s_0 \models F \psi$, we have a minimal **n** as before s.t. $s_n \models \psi$
 - case 1: for all i, $s_i \nvDash \neg \phi \land \neg \psi$ (i.e. $s_i \vDash \phi \lor \psi$). Then $s_0 \vDash \phi \cup \psi$
 - case 2: for some i, $s_i \models \neg \phi \land \neg \psi$. We need to prove for any i <n, $s_i \models \phi$
 - Suppose s_i ⊭ φ (i.e., s_i ⊨ ¬φ). Since n is minimal, we know s_i ⊨ ¬ψ. So by (*) there is some j <i<n with s_i ⊨ ψ, contradicting the minimality of n. Contradiction

