
Intro. to Logic
CS402 Fall 2007

1

Temporal LogicTemporal Logic
-- Model CheckingModel Checking

Moonzoo Kim
CS Division of EECS Dept.

KAIST

moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

Intro. to Logic
CS402 Fall 2007

2

Mutual exclusion exampleMutual exclusion example

When concurrent processes share a resource, it may be When concurrent processes share a resource, it may be
necessary to ensure that they do necessary to ensure that they do notnot have access to the have access to the
common resource common resource at the same timeat the same time

We need to build a protocol which allows only one process to We need to build a protocol which allows only one process to
enter enter critical sectioncritical section

Requirement propertiesRequirement properties
Safety: Safety:

Only one process is in its critical section at anytimeOnly one process is in its critical section at anytime
LivenessLiveness: :

Whenever any process requests to enter its critical section, it Whenever any process requests to enter its critical section, it will will
eventually be permitted to do soeventually be permitted to do so

NonNon--blocking: blocking:
A process can always request to enter its critical sectionA process can always request to enter its critical section

No strict sequencing:No strict sequencing:
processes need not enter their critical section in strict sequenprocesses need not enter their critical section in strict sequencece

Intro. to Logic
CS402 Fall 2007

3

11stst model model
We model two processesWe model two processes

each of which is in each of which is in
nonnon--critical state (critical state (nn) or) or
trying to enter its critical state trying to enter its critical state
((tt) or) or
critical section (critical section (cc))

No self edgesNo self edges
each process executes like each process executes like
nn→→ t t →→ c c →→ n n →→ ……

but the two processes but the two processes
interleaveinterleave with each otherwith each other

only one of the two only one of the two
processes can make a processes can make a
transition at a time transition at a time
((asynchronous interleavingasynchronous interleaving))

Intro. to Logic
CS402 Fall 2007

4

11stst model for mutual exclusionmodel for mutual exclusion

Safety: sSafety: s00 ²² G G ¬¬ (c(c11 ÆÆ cc22))
LivenessLiveness ss00 22 G(tG(t11 →→ F cF c11))

see ssee s00→→ss11→→ss33→→ss44→→ss55→→ss33 ……
NonNon--blockingblocking

for every state satisfying for every state satisfying nnii, ,
there there is ais a successor satisfying successor satisfying ttii

ss00 satisfies this propertysatisfies this property
We We cannotcannot express this property express this property
in LTL but in CTLin LTL but in CTL

Note that LTL specifies that Note that LTL specifies that φφ is satisfied is satisfied for all pathsfor all paths
No strict orderingNo strict ordering

there is a path where cthere is a path where c11 and cand c22 do not occur in strict order do not occur in strict order
Complement of this isComplement of this is

G(G(cc11 →→ cc11 W (W (¬¬cc11 ÆÆ ¬¬cc11 W cW c22))))
anytime we get into a anytime we get into a cc11 state, either state, either that conditionthat condition persists indefinitely, or it ends persists indefinitely, or it ends
with a with a nonnon--cc11 state and in that case there is state and in that case there is no further cno further c11 statestate unless and until we unless and until we
obtain a obtain a cc22 statestate

Intro. to Logic
CS402 Fall 2007

5

2nd model for mutual exclusion2nd model for mutual exclusion

All 4 properties are satisfiedAll 4 properties are satisfied
SafetySafety
LivenessLiveness
NonNon--blockingblocking
No strict sequencingNo strict sequencing

Intro. to Logic
CS402 Fall 2007

6

NuSMVNuSMV model checkermodel checker

NuSMVNuSMV programs consist of one or more programs consist of one or more modulesmodules..
one of the modules must be called mainone of the modules must be called main

Modules can declare Modules can declare variablesvariables and assign to them.and assign to them.
AssignmentsAssignments usually give the initial value of a variable xusually give the initial value of a variable x
((init(xinit(x))) and its next value () and its next value (next(xnext(x)) as an expression in)) as an expression in
terms of the current values of variables.terms of the current values of variables.

this expression can be this expression can be nonnon--deterministicdeterministic
denoted by several expressions in braces, or no assignment at aldenoted by several expressions in braces, or no assignment at alll

Intro. to Logic
CS402 Fall 2007

7

ExampleExample
requestrequest is underis under--specified, i.e., specified, i.e.,
not controlled by the programnot controlled by the program

request is determined (randomly) request is determined (randomly)
by external environmentby external environment
thus, whole program works thus, whole program works nonnon--
deterministicallydeterministically

Case statement is evaluated Case statement is evaluated
toptop--toto--bottombottom

MODULE mainMODULE main
VARVAR
requestrequest: : booleanboolean;;
status: {status: {ready,busyready,busy};};

ASSIGNASSIGN
init(statusinit(status) := ready;) := ready;
next(statusnext(status) := case) := case

request : busy;request : busy;
1: {1: {ready,busyready,busy};};
esacesac;;

LTLSPECLTLSPEC
G(requestG(request --> F status=busy)> F status=busy)

Intro. to Logic
CS402 Fall 2007

8

Modules in Modules in NuSMVNuSMV

A A modulemodule is instantiated when a variable is instantiated when a variable
having that module name as its type is having that module name as its type is
declared.declared.
A 3 bit counter increases from 000 to 111 A 3 bit counter increases from 000 to 111
repeatedlyrepeatedly

Req. propertyReq. property
infinitely setting carryinfinitely setting carry--out of most significant out of most significant
bit as 1bit as 1

By default, modules in By default, modules in NuSMVNuSMV are are
composed composed synchronouslysynchronously

there is a global clock and, each time it ticks, there is a global clock and, each time it ticks,
each of the modules executes in paralleleach of the modules executes in parallel
By use of the By use of the ‘‘processprocess’’ keyword, it is keyword, it is
possible to compose the modules possible to compose the modules
asynchronouslyasynchronously

