Intro. to Logic
CS402 Fall 2007

Temporal Logic
- Model Checking

Moonzoo Kim
CS Division of EECS Dept.
KAIST

moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07



Mutual exclusion example

When concurrent processes share a resource, it may be
necessary to ensure that they do not have access to the
common resource at the same time

We need to build a protocol which allows only one process to
enter critical section

Requirement properties
Safety:

Only one process is in its critical section at anytime
Liveness:

Whenever any process requests to enter its critical section, it will
eventually be permitted to do so

Non-blocking:
A process can always request to enter its critical section
No strict sequencing:
processes need not enter their critical section in strict sequence

msr Intro. to Logic 2

CS402 Fall 2007



1st model

We model two processes

= each of which is in \
non-critical state (n) or

trying to enter its critical state
(t) or
critical section (c) S ,—n\
L H[f
= No self edges

each process executes like 52 56 f

n—-t—-¢c—n— ... H"z

= but the two processes
interleave with each other

only one of the two
processes can make a
transition at a time
(asynchronous interleaving)

msr Intro. to Logic 3
CS402 Fall 2007




1st model for mutua.\l exclusion
ﬁ;;/whm \\\

Safety: s, FG ~(c; A cy)
Liveness s, ¥ G(t; — F c,)
see S;—S;—+S;—S,—S;—S; ... —~
Non-blocking
for every state satisfying n,
there is a successor satisfying t,
S, satisfies this property
We cannot express this property
in LTL butin CTL
Note that LTL specifies that ¢ is satisfied for all paths
No strict ordering
there is a path where ¢, and c, do not occur in strict order
Complement of this is
G(c; = ¢, W (=¢; A 2y W Cy))

anytime we get into a c, state, either that condition persists indefinitely, or it ends
with a non-c, state and in that case there is no further c, state unless and until we
obtain a ¢, state N




2nd model for mutual exclusion

All 4 properties are satisfied

m Safety \
= Liveness

= Non-blocking

= No strict sequencing

m Intro. to Logic 5

e CS402 Fall 2007



NuSMV model checker

NuSMV programs consist of one or more modules.
= one of the modules must be called main

Modules can declare variables and assign to them.

Assignments usually give the initial value of a variable x
(init(x)) and its next value (next(x)) as an expression Iin
terms of the current values of variables.

= this expression can be non-deterministic
denoted by several expressions in braces, or no assignment at all

msr Intro. to Logic
CS402 Fall 2007




MODULE main
VAR
request: boolean;
status: {ready,busy};
ASSIGN
Init(status) := ready;
next(status) := case
request : busy;
1: {ready,busy};
esac;
LTLSPEC
G(request -> F status=busy)

m Intro. to Logic
. CS402 Fall 2007

Example

request is under-specified, i.e.,
not controlled by the program

= request is determined (randomly)
by external environment

= thus, whole program works non-
deterministically

Case statement is evaluated
top-to-bottom




A module is instantiated when a variable
having that module name as its type is
declared.

A 3 bit counter increases from 000 to 111
repeatedly
= Req. property

infinitely setting carry-out of most significant
bitas 1

By default, modules in NuSMV are
composed synchronously

= there is a global clock and, each time it ticks,
each of the modules executes in parallel

= By use of the ‘process’ keyword, it is
possible to compose the modules
asynchronously

Intro. to Logic

e CS402 Fall 2007

Modules in NuSMV

MODULE main

VAR
bit0 : counter_cell(1l);
bitl : counter_cell(bit0.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC

G F bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;
ASSIGN

init(value) := 0;

next (value) := (value + carry_in) mod 2;
DEFINE

carry_out := value & carry_in;



