Temporal Logic - Branching-time logic (1/2)

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

LTL vs. CTL

- LTL implicitly quantifies universally over paths
 - a state of a system satisfies an LTL formula if all paths from the given state satisfy it
 - properties which use both universal and existential path quantifiers cannot in general be model checked using LTL.
 - property ϕ which use only universal path quantifiers can be checked using LTL by checking $\neg\phi$
- Branching-time logic solve this limitation by quantifying paths explicitly
 - There is a reachable state satisfying q: EF q
 - Note that we can check this property by checking LTL formula ϕ =G \neg q
 - If ϕ is true, the property is false. If ϕ is false, the property is true
 - From all reachable states satisfying p, it is possible to maintain p continuously until reaching a state satisfying q: AG (p → E (p U q))
 - Whenever a state satisfying p is reached, the system can exhibit q continuously forevermore: AG (p \rightarrow EG q)
 - There is a reachable state from which all reachable states satisfy p: EF AG p

Syntax of Computation Tree Logic (CTL)

- Def 3.12 $\phi = \bot | \top | p | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \rightarrow \phi | AX \phi$ | EX ϕ | AF ϕ | EF ϕ | AG ϕ | EG ϕ | A (ϕ U ϕ) | E (ϕ U ϕ)
 - A: along all paths
 - E: along at least one path
- Precedence
 - AG, EG, AF, EF, AX, EX, \land , \lor , \rightarrow , AU, EU
- Note that the following formulas are not well-formed CTL formulas
 - EF G r
 - A ¬G ¬ p
 - F (r U q)
 - EF (r U q)
 - AEF r
 - A ((r U q) ∧ (p U r))

A [(AX ¬p) U (E [(EX p∧q) U ¬p)]]

Semantics of CTL (1/2)

- Def 3.15 Let *M* = (S, →, L) be a model for CTL, s in S, φ a CTL formula. The relation *M*,s ⊨ φ is defined by structural induction on φ. We omit *M* if context is clear.
 - \mathcal{M} ,s $\models \top$ and \mathcal{M} ,s $\nvDash \bot$
 - \mathcal{M} ,s \vDash p iff p \in L(s)
 - $\mathcal{M}, \mathsf{S} \vDash \neg \phi \text{ iff } \mathcal{M}, \mathsf{S} \nvDash \phi$
 - $\mathcal{M}, \mathbf{s} \vDash \phi_1 \land \phi_2$ iff $\mathcal{M}, \mathbf{s} \vDash \phi_1$ and $\mathcal{M}, \mathbf{s} \vDash \phi_2$
 - $\mathcal{M}, \mathbf{s} \models \phi_1 \lor \phi_2$ iff $\mathcal{M}, \mathbf{s} \models \phi_1$ or $\mathcal{M}, \mathbf{s} \models \phi_2$
 - $\bullet \quad \mathcal{M}, \mathsf{S} \vDash \phi_{_1} \rightarrow \phi_{_2} \text{ iff } \mathcal{M}, \mathsf{S} \nvDash \phi_{_1} \text{ or } \mathcal{M}, \mathsf{S} \vDash \phi_{_2}$
 - M,s ⊨ AX φ iff for all s₁ s.t. s → s₁ we have M, s₁ ⊨ φ. Thus AX says "in every next state"
 - \mathcal{M} ,s \models EX ϕ iff for some s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus EX says "in some next state"
 - \mathcal{M} ,s \models AX ϕ iff for all s₁ s.t. s \rightarrow s₁ we have \mathcal{M} , s₁ $\models \phi$. Thus AX says "in every next state"
 - *M*,s ⊨ EX φ iff for some s₁ s.t. s → s₁ we have *M*, s₁ ⊨ φ. Thus EX says "in some next state"

Semantics of CTL (2/2)

- Def 3.15 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M}, s \vDash \phi$ is defined by structural induction on ϕ . We omit \mathcal{M} if context is clear.
 - \mathcal{M} ,s \models AG ϕ iff for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s, and all s_i along the path, we have \mathcal{M} , $s_i \models \phi$.
 - \mathcal{M} ,s $\models \mathbf{EG} \phi$ iff there is a path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s, and all s_i along the path, we have \mathcal{M} , $s_i \models \phi$.
 - \mathcal{M} ,s \models AF ϕ iff for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s, and there is some s_i s.t. \mathcal{M} , $s_i \models \phi$.
 - \mathcal{M} ,s \models EF ϕ iff there is a path s₁ \rightarrow s₂ \rightarrow s₃ \rightarrow ... where s₁ equals s, and there is some s_i s.t. \mathcal{M} ,s_i $\models \phi$.

 - \mathcal{M} ,s $\models \mathbf{E} [\phi_1 \cup \phi_2]$ iff there is a path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ where s_1 equals s, that path satisfies $\phi_1 \cup \phi_2$

KAIST Intro. to Logic CS402 Fall 2007

- $\mathcal{M}, s_0 \vDash AG (p \lor q \lor r \rightarrow EF EG r)$
- *M*,s₀⊨ A [p U r]
- *M*,s₀⊨ E [(p ∧ q) U r]
- M,s₀⊨ AF r
- *M*,s₂⊨ EG r
- *M*,s₀ ⊨ ¬EF(p∧r)
- M,s₀⊨ ¬AX(q∧r)
- *M*,s₀⊨ EX (q∧r)
- $\blacksquare \mathcal{M}, s_0 \vDash p \land q, \mathcal{M}, s_0 \vDash \neg r, \mathcal{M}, s_0 \vDash \top$

p,q

q, r

7

 s_2