Predicate Calculus
 - Semantics 3/4

Moonzoo Kim
CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

Example: finite automata

- For an interpretation $\mathcal{I}=(\mathcal{D}, \mathcal{R}, \mathcal{F}, \mathcal{C})$ where
- $\mathcal{D}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\mathcal{R}=\{$ Trans, Final, Equality $\}$ where

Trans $=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{c})\}$

- Final $=\{b, c\}$
- Equality $=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$
- $\mathcal{F}=\{ \}$

- $\mathcal{C}=\{a\}$
- Formulas for \mathcal{I} where $\mathrm{R}^{\mathcal{I}}=$ Trans, $\mathrm{F}^{\mathcal{I}}=$ Final, $=^{\mathcal{I}}=$ Equality, $\mathrm{i}^{\mathcal{I}}=\mathrm{a}$
- $\mathcal{I} \vDash \exists \mathrm{y} R(\mathrm{i}, \mathrm{y})$
- $\mathcal{I} \vDash \neg F(i)$
- $\mathcal{I} \not \models \forall x \forall y \forall z(R(x, y) \wedge R(x, z) \rightarrow y=z)$
- $\mathcal{I} \vDash \forall x \exists y \mathrm{R}(\mathrm{x}, \mathrm{y})$

A formula represents a set of models

- A formula ϕ describes characteristics of target structures in a compact way.
- ex. deterministic automata, partial order sets, binary trees, relational database, etc
- In other words, a formula ϕ designates a set of models (i.e., interpretations) that satisfies ϕ
- $\forall x \forall y \forall z(R(x, y) \wedge R(x, z) \rightarrow y=z)$ represents all deterministic graphs
- $\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z))$ represents all transitive graphs.
- Validity, satisfiability, and provability of a predicate formula is all undecidable. However, checking formulas on concrete interpretations is practical
- ex. SQL queries over relational database
- ex. XQueries over XML documents
- ex. Model checking of a program

Example: partial order set (POSET)

- Def. \mathcal{U} is a partially ordered set (poset) if \mathcal{U} is a model of
- $\quad \forall x y z(p(x, y) \wedge p(y, z) \rightarrow p(x, z))$
- $\quad \forall x y(p(x, y) \wedge p(y, x) \leftrightarrow q(x, y))$
$\mathrm{p}^{\mathcal{U}}=\leq, \mathrm{q}^{\mathcal{U}}==$, then
- $\forall x y z(x \leq y \leq z \rightarrow x \leq z)$
- $\forall x y(x \leq y \leq x \leftrightarrow x=y)$
- $\mathcal{U}_{1} \vDash \exists x \forall y(x \leq y)$
- i.e., \mathcal{U}_{1} has a least element
- $\mathcal{U}_{3} \vDash \forall x \neg \exists y(x<y)$
- i.e., in \mathcal{U}_{3} no element is strictly less than another element

KAST
Intro. to Logic CS402 Fall 2007

- Note that $x<y \equiv x \leq y \wedge \neg(x=y)$
- Def. \mathcal{U} is a totally ordered set if \mathcal{U} is a poset and $\mathcal{U} \vDash \forall x \forall y(x \leq y \vee y \leq x)$
- Def. \mathcal{U} is densely ordered if $\mathcal{U} \vDash \forall x \forall y(x<y \rightarrow \exists z(x<z \wedge z<y)$
- We can distinguish \mathcal{U}_{3} and \mathcal{U}_{4} by $\mathrm{A}(\mathrm{x})$ $=\forall y(y \neq x \rightarrow \neg(y \leq x) \wedge \neg(x \leq y))$
- $\mathcal{U}_{4} \vDash \forall x \forall y(A(x) \wedge A(y) \rightarrow x=y)$
- $\mathcal{U}_{3} \vDash \neg \forall x \forall y(A(x) \wedge A(y) \rightarrow x=y)$

Exercise: POSET (cont.)

- Define formulas for
- x is the maximum (the largest element in a target domain)
- $\forall y \mathrm{y} \leq \mathrm{x}$
- x is maximal (not smaller than any other elements)
- $\neg \exists \mathrm{y} x<\mathrm{y} \equiv \forall \mathrm{y} \neg(\mathrm{x}<\mathrm{y})$

Note the difference between $\forall y \mathrm{y} \leq \mathrm{x}$ and $\forall \mathrm{y} \neg(\mathrm{x}<\mathrm{y})$.

- For totally ordered set, these two formulas are same, but for POSET, they are different.
- There is no element between x and y
$\neg \exists z((x \leq z \wedge z \leq y) \vee(y \leq z \wedge z \leq x))$
- x is an immediate successor of y
- $(x>y) \wedge \neg \exists z(y \leq z \wedge z \leq x)$
- z is the infimum of x and y (the greatest element less than or equal to x and y)
$\forall s t((s \leq x \wedge t \leq y) \rightarrow(s \leq z \wedge t \leq z) \wedge(z \leq x \wedge z \leq y))$
- Give a formula ϕ s.t. $\mathcal{U}_{2} \vDash \phi$ and $\mathcal{U}_{4} \vDash \neg \phi$
- Let $\phi=\exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \leq \mathrm{y} \vee \mathrm{y} \leq \mathrm{x})$. Find posets \mathcal{U}_{1} and \mathcal{U}_{2} s.t. $\mathcal{U}_{1} \vDash \phi$ and $\mathcal{U}_{2} \vDash \neg \phi$

Example: arithmetic

Def. A Peano structure $\mathcal{U}=(\mathcal{N}, \square$ Example
$\{=\},\left\{S,+,{ }^{\star}\right\},\{0\}$) is a model of

1. $\forall x(\neg(0=S(x)))$
2. $\forall x \forall y(S(x)=S(y) \rightarrow x=y)$
3. $\forall x(x+0=x)$
4. $\forall x \forall y(x+S(y)=S(x+y))$
5. $\forall x(x * 0=0)$
6. $\forall x \forall y\left(x^{*} S(y)=x^{*} y+x\right)$
7. $\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(\mathrm{S}(\mathrm{x})) \rightarrow \forall x \phi(\mathrm{x})$

- mathematical induction
- These 7 formulas do not have " \leq " or "<" but these predicate can be expressed by
- $x<y::=\exists z(x+S(z)=y)$
- $x \leq y::=x<y \vee x=y$
- The set of even numbers

$$
E(x)::=\exists y(x=y+y)
$$

- The divisibility relation
- $x \mid y::=\exists z\left(x^{*} z=y\right)$
- The set of prime numbers
- $\mathrm{P}(\mathrm{x})::=$
$\forall y \forall z\left(x=y^{*} z \rightarrow y=1 \vee z=1\right) \wedge x \neq 1$

