Propositional Calculus
- Propositional Normal Forms

Moonzoo Kim
CS Division of EECS Dept.
KAIST

moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

m Intro. to Logic

CS402 Fall 2007

Overview

Logic in Computer Science 2" ed (by M.Huth and
M.Ryan)

1.5.2 Conjunctive normal forms and validity

1.5.3 Horn clauses and satisfiability

m Intro. to Logic

« CS402 Fall 2007

Normal Forms

Advantages of normal forms

= A mechanical tool can handle a formula of a normal
form easier

= There are special algorithms to solve satisfiability of a
formula very efficiently if the formula is written in
some normal form.

We will cover two famous normal forms
= Conjunctive normal form (CNF) and Horn clauses

Conjunctive Normal Forms and validity

Any formula can be transformed into an equivalent
formula in CNF.

Formula is valid iff any of its equivalent formula is valid.

There exists a deterministic algorithm to convert a
propositional formula into CNF

Structural induction over the formula ¢.

B

Example of CNF

Translate formula ¢ = =p A ¢ — p A (r — q) Into CNF

We take 3 steps
1. Transform ¢ into implication-free formula ¢,
2. Transform implication-free ¢, into NNF ¢,
3. Transform implication-free and NNF ¢, into CNF v

:

B

Deterministic Algorithm

There exists a deterministic algorithm which always
computes the same output CNF for a given input ¢.

This algorithm, called CNF, should satisfy all of the
following requirements
CNF terminates for all formulas of propositional logic as input.
For each such input, CNF outputs an equivalent formula.
All output computed by CNF is in CNF.

B

Preprocessing Procedures

IMPL_FREE

lies in the de Morgan rules.

translates away all implications in ¢ by replacing
all subformulas of the form ¢— ¥ by = ¢ V 9

NNF (Negation Normal Form)
formula that contains only negations of atoms.

ex. pa—q, but not —(pAQ)

IMPL_FREE function

function IMPL_FREE(9)
[* precondition: ¢ propositional formula */
[* postcondition : ¢ implication free */
begin function
case
¢ is a literal : return ¢
¢ is ¢; — ¢, :return (—¢, V ¢,)
¢ IS —¢, : return (-IMPL_FREE(¢,))

¢ IS ¢, op ¢, : return (IMPL_FREE(¢,) op IMPL_FREE(¢,))
where op is a binary logical operator except —

end case
end function

NNFfunction

function NNF(¢)
[* precondition: ¢ implication free */

[* postcondition : NNF(¢) computes a NNF for ¢ */
begin function

case
¢ is a literal : return ¢
¢ IS —— ¢, : return NNF(¢,)

d IS ¢, A ¢, : return NNF(¢,) ANNF(d,)
dis ¢,V ¢, : return NNF(¢,) VNNF(d,)

o is —(dp, A ¢,) : return NNF(—¢, V —d,)

o is (¢, V d,) : return NNF(—¢, A —d,)
end case

end function

CNF function

function CNF(¢)
[* precondition: ¢ implication free and in NNF */
[* postcondition:CNF(¢) computes an equivalent CNF for ¢ */
begin function
case
¢ is a literal : return ¢
¢ IS ¢, A ¢, : return CNF(¢,) A CNF(¢,)
dis ¢,V ¢, : return DISTR(CNF(¢,),CNF(¢,))
end case
end function

KAIST Intro.to Logic 10

CS402 Fall 2007

DISTR function

function DISTR(ny, n,)
[* precondition : n, and n, are in CNF */
[* postcondition : DISTR(n,, n,) computes a CNF for n, Vn, */
begin function
case
Ny IS My; ANy, & return DISTR(Myy, np) A DISTR(My,: M2)
N IS Ny ANy, t return DISTR(ny, nyy) A DISTR(ny, n2,)
otherwise (=no conjunctions) : return n,; Vn,
end case
end function

Example of CNF

Transform ¢ = —=p A g — p A (r — ¢)))) into implication-free

formula
IMPL_FREE ¢

g

)

= —IMPL_FREE (—p A q) VV IMPL_FREE (p A (r — q))

= —((IMPL_FREE —p) A (IMPL_FREE q)) V IMPL_FREE (p A (r — q))
= —((—p) A IMPL_FREE q) V IMPL_FREE (p A (r — q))

= —(—p A q) V IMPL_FREE (p A (r — q))

= —(—-p A q) V ((IMPL_FREE p) A IMPL FREE (r — q))

= —(-pAq)V (p A IMPL_FREE (r — q))

=—(-pAq)V (p A(—~(IMPL_FREEr) V (IMPL_FREE q)))
=-(-pAq)V (pA(—rV (IMPL_FREE q)))

=2(=p AV (pA(-TVQq))

Example of CNF

2. Transform |mpI|cat|on -free ¢, into NNF ¢,

NNF (IMPL_FREE ¢)

g

NNF (—=(—=p A q)) VNNF (p A(—r V q))

NNF (=(—p) V —q) V NNF (p A (—r V q))

(NNF (——p)) V (NNF (—g)) VNNF (p A (—-r V q))
(p V (NNF (—q))) V NNF (p A (-1 V q))

(pV —q) VNNF (p A(—rV q))

(pV —q) V ((NNF p) A (NNF (—r V q)))

(pV —q)V(p A(NNF (-1 V q)))

= (pV —q)V(p A((NNF (—r)) V (NNF q)))

(pV —q)V (p A (—rV (NNF g)))

= (pVq)VI(pA(-rVQq)).

Example of CNF

Transform implication-free and NNF ¢, into CNF v

CNF (NNF (IMPL_FREE ¢))

§

CNF ((pV —q) V (p A (—r V q)))

DISTR (CNF (p VV —q),CNF (p A (—r V q)))
DISTR (p V —q,CNF (p A (—r V q)))

DISTR (pV —q,p A (—r V q))

DISTR (pV —gq,p) ADISTR (pV —q,—r V q)
(pV gV p)ADISTR (p V —g, —r V q)
(pV-gVp)A(pV gV -rVg).

Horn clauses

Definition 1.46 A Horn formula is a formula \phi of

propositional logic if it can be generated as an instance
of H In this grammat:

1.
2.
3.
4.

P

A
C
H

=1 T|p
=P|PAA
=A—>P

»=C|CAH.

Each instance of C is a Horn clause.

Intro. to Logic
CS402 Fall 2007

15

Examples of Horn formulas

Examples of Horn formulas

m (PAQAS—P)A(@ATr—=pP APAS—S)

m (PAQAS— L)A(gQATr—=p)A(T —s)

= (P2 AP3APs = P13) AT = ps) A(Ps A Py — L)
Examples of formulas which are not Horn formulas
m (PAQAS— P AATr—=p)A(PAS—S)

m (PAQAS— L)A(~gATr—=p)A(T —s)

= (P2 AP3APs— Pz AP) A(T APs) A(Ps APy — L)

= (P2 AP3APs— Pz APz) A(T APs) A(Ps APy VL)

KAIST Intro.to Logic 16

CS402 Fall 2007

Horn clauses and satisfiability

The algorithm for deciding the satisfiability of a Horn
formula ¢ maintains a list of all occurrences of type P In
¢ and proceeds like this:

It marks T if it occurs in that list.

If there is a conjunct P, A P, A ... A P; — P’ of ¢ such that all
P, with 1 < < k; are marked, mark P as well and goto 2.
Otherwise (= there is no conjunct P, A P, A ... A P,;— P’ such
that all P, are marked) goto 3.

If L is marked, print out ‘The Horn formula ¢ is unsatisfiable.’
and stop. Otherwise, goto 4.

Print out ‘The Horn formula ¢ is satisfiable.” and stop.

KAIST Intro.to Logic 17

CS402 Fall 2007

HORN function

function HORN(¢)

[* precondition: ¢ is Horn formula */

[* postcondition : HORN(¢) decides the satisfiability for ¢ */
begin function

mark all occurrences of T in ¢

while there is a conjunct P, AP, A ... AP, — P"0of ¢
such that all Pj are marked but P'isn’t do
mark P’

end while
If L is marked then return ‘unsatisfiable’ else return ‘satisfiable’
end function

KAIST Intro.to Logic 18

CS402 Fall 2007

Correctness of the HORN algorithm

The HORN algorithm is deterministic and correct

The algorithm terminates on all Horn formulas ¢, and

Its output is always correct.
Theorem 1.47 the algorithm HORN is correct for the
satisfiability decision problem of Horn formulas and has
no more than n + 1 cycles in its while statement if n is
the number of atom is in ¢. In particular, HORN always

terminates on correct input.

m Intro. to Logic o
b s —w CS402 Fall 2007

	 Propositional Calculus �- Propositional Normal Forms�Moonzoo Kim�CS Division of EECS Dept.� KAIST� �moonzoo@cs.kaist.ac.kr�h
	Overview
	Normal Forms
	Conjunctive Normal Forms and validity
	Example of CNF
	Deterministic Algorithm
	Preprocessing Procedures
	IMPL_FREE function
	NNFfunction
	CNF function
	DISTR function
	Example of CNF
	Example of CNF
	Example of CNF
	Horn clauses
	Examples of Horn formulas
	Horn clauses and satisfiability
	HORN function
	Correctness of the HORN algorithm

