Temporal Logic
-Alternating Bit Protocol

Moonzoo Kim
CS Division of EECS Depit.
KAIST

moonzoo@ecs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

msr Intro. to Logic
CS402 Fall 2007




The alternating bit protocol (ABP)

ABP is a protocol for transmitting messages along a ‘lossy line’, i.e., a line
which may lose or duplicate messages, but not corrupt messages

= this lossy characteristic is common to data link and physical link layers

ABP has four entities

= the sender S, the receiver R, the message channel, and the acknowledgement
channel

ABP works as follows

= S transmits the first part of the message together with the ‘control’ bit b.

= If R receives a message with the control bit b, it sends b along the
acknowledgement channel.
If not, R ignores the message.
= If S receives acknowledge b from R, S sends next message with —b.
If not, S resends the message again with b

= By alternating the control bit, both R and S can guard against losing messages (they

ignore messages with unexpected control bit) Message
channel

Receilver

KAIST ntro. to Logic Acknowledge 5
CS402 Fall 2007 channel



The ABP sender

- MODULE d k
messagel: current bit of the ¢ sender (ack)

message being sent ot . (sending, sent);
= it is non-deterministic messagel : boolean;
assuming that it is received messageZ : boolean;

from higher protocol layer ASSIGN |
(i.e., environment) :Z;E:zté; = i:gzlﬂg:
messagez: the control bit ‘ ack = message2 & ! (st=sent) : sent;
= note that message2 1 : sending;
alternates bit esac;
Req. property says that we next ':messa”ei;:
can always succeed in st = sent : {0,1};
sending the current message 1 : messagel;
= For eliminating uninteresting osac;
violation of this property, we ~ 7€*® {messa‘gei;:
add FAIRNESS running e T
= Note that we use CTL 1 : message?2;
formula, with an universal ~ esac;
path quantifier ‘A’ FAIRNESS running

SPEC AG AF st=sent
m Intro. to Logic ’
. CS402 Fall 2007




The ABP recelver

MODULE recelver (messagel,messagez)

VAR
st : {receiving, recelived};
ack : boolean;
expected : boolean;
ASSIGN
init(st) := receiving;
next (st) := case
messageZ-expected & ! (st=received) : received;
1 : receiving;
egac:
next (ack) :=
case
st = received : message?l;
1 « ack:
esac;
next (expected) :=
case
st = received : !expected;
1 : expected;
esac;

FAIRNESS running
KAIST spec AG AF st-received



The ABP channels

Lossy characteristics is modeled using forget
= the value of input should be transmitted to output unless forget is true

Fairness assumption enforces that they infinitely often transmit the message

correctly.
= Note that FAIRNESS !forget is not enough.
Why?

MODULE one-bit-chan(input)
VAR
output: boolean;
forget : boolean;
ASSIGN
next(output) := case
forget : output;
1 :input;
esac;
FAIRNESS running
FAIRNESS input & !forget
-@i FAIRNESS linput & 'forget

MODULE two-bit-chan(inputl,input2)
VAR
outputl: boolean;
output2: boolean;
forget : boolean;
ASSIGN
next(outputl) := case
forget : outputl;
1 :inputl;
esac;
next(output?) := case
forget : output2;
1 :input2;
esac;

FAIRNESS running

FAIRNESS inputl & !forget
FAIRNESS !inputl & !forget
FAIRNESS input2 & !forget
FAIRNESS !input2 & !'forget




The overall ABP

Integrate S,R, message channel and acknowledge channel
Initially, the first control bit is O.
This ABP satisfies the following specification

m Safety: if the message bit 1 has been sent and the correct acknowledgement has
been returned, then a 1 was indeed received by the receiver

= Liveness: Messages get through eventually.

For any state, there is inevitably a future state in which the current message has got
MODULE madin
VAR
S : process sender (ack_chan.output) ;
R : process recelver (msg_chan.outputl,msg_chan.output?);
msg_chan : process two-bit-chan(S.messagel,S.message?) ;
ack_chan : process one-bit-chan(R.ack);
ASSIGN
init (S.message?)
init (R.expected)
init(R.ack) = 1;
init (msg_chan.output2) :
init (ack_chan.output) := 1;

0;
{:}-

L] (1] L]

WKNEE ' SPEC AG(S.st=sent & S.messagel=1 -> msg_chan.outputl=1) 6



