
Predicate logic

2.1 The need for a richer language

In the first chapter, we developed propositional logic by examining it from
three different angles: its proof theory (the natural deduction calculus),
its syntax (the tree-like nature of formulas) and its semantics (what these
formulas actually mean). From the outset, this enterprise was guided by the
study of declarative sentences, statements about the world which can, in
principle, be given a truth value.

We begin this second chapter by pointing out the limitations of proposi-
tional logic with respect to encoding purely declarative sentences. Proposi-
tional logic dealt quite satisfactorily with sentence components like not, and,
or and i f . . . then, but the logical aspects of natural and artificial languages
are much richer than that. What can we do with modifiers like there exists
. . . , all . . . , among . . . and only . . . ? Here, propositional logic shows clear
limitations and the desire to express more subtle declarative sentences led to
the design of predicate logic, which is also called first-order logic.

Let us consider the declarative sentence

Every student is younger than some instructor.

In propositional logic, we could identify this assertion with a propositional
atom p. However, that is a rather crude way of reflecting the finer logical
structure of this sentence. What is this statement about? Well, it is about
being a student, being an instructor and being younger than somebody else.
These are all properties of some sort, so we would like to have a mechanism
for expressing them together with their logical relationships and dependences.
We now use predicates for that purpose. For example, we could write

2.1 The need for a richer language

to denote that Andy is a student and

to say that Paul is an instructor. Likewise,

Y (andy, pad)

could mean that Andy is younger than Paul. The symbols S , I and Y are
called predicates. Of course, we have to be clear about their meaning. The
predicate Y could also mean that the second person is younger than the first
one, so we need to specify exactly what these symbols refer to.

Having such predicates at our disposal, we still need to formalise those
parts of the sentence above which speak of every and some. Obviously, this
sentence refers to the individuals that make up some academic community
(left implicit by the sentence), like Kansas State University or the University
of Birmingham, and it says that for each student among them there is an
instructor among them such that the student is younger than the instructor.

These predicates are not yet enough to allow us to express the sentence
'Every student is younger than some instructor'. We don't really want to
write down all instances of S(.) where . is replaced by every student's name
in turn. Similarly, when trying to codify a sentence having to do with the
execution of a program, it would be rather laborious to have to write down
every state of the computer. Therefore, we employ the concept of a variable.
Variables are written

and can be thought of as place holders for concrete values (like a student, or
a program state). Using variables, we can now specify the meanings of S, I
and Y more formally:

S(x) : x is a student

I (x) : x is an instructor

Y(x,Y) : x is younger than y.

Note that the names of the variables are not important, provided that we
use them consistently. We can state the intended meaning of I by writing

I(y) : y is an instructor

or, equivalently, by writing

I(x) : x is an instructor.

92 Predicate logic

Variables are mere place holders for objects. The availability of variables is
still not sufficient for capturing the essence of the example sentence above.
We need to convey the meaning of

Every student x is younger than some instructor y.

This is where we need to introduce quantijiers

V (read: 'for all')

3 (read : 'there exists')

which always come attached to a variable, as in Vx ('for all x') or in 32
('there exists z', or 'there is some 2'). Now we can write the example sentence
in an entirely symbolic way as

Actually, this encoding is rather a paraphrase of the original sentence. In
our example, the re-translation results in

For every x , i f x is a student, then there is some y which is an instructor such that x
is younger than y .

Different predicates can have a different number of arguments. The pred-
icates S and I have just one (they are called unary predicates), but predicate
Y requires two arguments (it is called a binary predicate). Predicates with
any finite number of arguments are possible in predicate logic.

Another example is the sentence

Not all birds can fly.

For that we choose the predicates B and F which have one argument
expressing

B(x) : x is a bird

F(x) : x can fly.

The sentence 'Not all birds can fly' can now be coded as

saying: 'It is not the case that all things which are birds can fly.'. Alternatively,
we could code this as

meaning: 'There is some x which is a bird and cannot fly.'. Note that the

2.1 The need for a richer language 93

first version is closer to the linguistic structure of the sentence above. These
two formulas should evaluate to T in the world we currently live in since, for
example, penguins are birds which cannot fly. Shortly, we address how such
formulas can be given their meaning in general. We will also explain why
formulas like the two above are indeed equivalent semantically.

Coding up complex facts expressed in English sentences as logical formulas
in predicate logic is important and much more care must be taken than
in the case of propositional logic. However, once this translation has been
accomplished the main objective is to reason symbolically (I-) or semantically
(t=) about the information expressed in those formulas.

In Section 2.4, we develop the proper notion of models, real or artificial
worlds in which these assertions can be true or false, which allows us to
define semantic entailment

The latter expresses that, given any such model in which all &, 42,. . . ,q5,
hold, it is the case that y holds in that model as well. In that case, one
also says that y is semantically entailed by #q, #z,. . . ,$,. Although this
definition of semantic entailment closely matches the one for propositional
logic in Definition 1.33, the process of evaluating a predicate formula is quite
different from the computation of truth values for propositional logic. We
discuss it in detail in Section 2.4.

In Section 2.3, we extend our natural deduction calculus so that it covers
logical formulas of predicate logic as well. In this way we are able to prove
sequents

in a similar way to that in the first chapter. It is outside the scope of this
book to show that the natural deduction calculus for predicate logic is sound
and complete with respect to semantic entailment; but it is indeed the case
that

for formulas of the predicate calculus. The first proof of this was done by
the mathematician K. Godel.

What kind of reasoning must predicate logic be able to support? To get a
feel for that, let us consider the following argument:

No books are gaseous. Dictionaries are books. Therefore, no dictionary is gaseous.

94 Predicate logic

The predicates we choose are

B(x) : x is a book

G(x) : x is gaseous

D(x) : x is a dictionary.

Evidently, we need to build a proof theory and semantics that allow us to
derive

as well as

Verify that this sequent expresses the argument above in a symbolic form.

Predicate symbols and variables allow us to code up much more of the
logical structure of declarative sentences than was possible in propositional
logic. Predicate logic contains one more concept, that of function symbols,
that allows us to go even further. Consider the declarative sentence

Every child is younger than i ts mother.

We could code it using predicates as

where C(x) means that x is a child, M(x,y) means that x is y's mother
and Y(x,y) means that x is younger than y. (Note that we actually used
M(y, x) (y is x's mother), not M(x, y).) As we have coded it, the sentence
says that, for all children x and any mother of theirs y, x is younger than y.
It is not very elegant to say 'any of x's mothers', since we know that every
individual has one and only one mother1. The inelegance of coding 'mother'
as a predicate is even more apparent if we consider the sentence

Andy and Paul have the same maternal grandmother.

which in predicate logic, using a and p for Andy and Paul and M for mother
as before, becomes

Vx Vy Vu Vv (M(x, y) A M(y, a) A M(u, v) A M(v, p) --+ x = u).

This formula says that, if y and v are Andy's and Paul's mothers, respectively,
and x and u are their mothers (i.e. Andy's and Paul's maternal grandmothers,
respectively), then x and u are the same person. Notice that we used a special

We assume here that we are talking about genetic mothers, not adopted mothers, step mothers etc.

2.1 The need for a richer language 95

predicate in predicate logic, equality ; it is a binary predicate, i.e. it takes two
arguments, and is written =. Unlike other predicates, it is usually written
in between its arguments rather than before them; that is, we write x = y
instead of = (x, y) to say that x and y are equal.

The function symbols of predicate logic give us a way of avoiding this
ugly encoding, for they allow us to represent y's mother in a more direct
way. Instead of writing M(x, y) to mean that x is y's mother, we simply
write m(y) to mean y's mother. The symbol m is a function symbol: it takes
one argument and returns the mother of that argument. Using m, the two
sentences above have simpler encodings than they had using M:

now expresses that every child is younger than its mother. Note that we need
only one variable rather than two. Representing that Andy and Paul have
the same maternal grandmother is even simpler; it is written

quite directly saying that Andy's maternal grandmother is the same person
as Paul's maternal grandmother.

One can always do without function symbols, by using a predicate symbol
instead. However, it is usually neater to use function symbols whenever pos-
sible, because we get more compact encodings. However, function symbols
can be used only in situations in which we want to denote a single object. We
rely on the fact that every individual has a uniquely defined mother, so that
we can talk about x's mother without risking any ambiguity (for example,
if x had no mother, or two mothers). For this reason, we cannot have a
function symbol b(.) for 'brother'. It might not make sense to talk about
x's brother, for x might not have any brothers, or he might have several.
'Brother' must be coded as a binary predicate.

To exemplify this point further, if Mary has several brothers, then the
claim that 'Ann likes Mary's brother' is ambiguous. It might be that Ann
likes one of Mary's brothers, which we would write as

(where B and L mean 'is brother of' and 'likes', and a and m mean Ann
and Mary) - this sentence says that there exists an x which is a brother of
Mary and is liked by Ann. Alternatively, if Ann likes all of Mary's brothers,
we write it as

saying that any x which is a brother of Mary is liked by Ann.

96 Predicate logic

Different function symbols may take different numbers of arguments. In a
domain involving students and the grades they get in different courses, one
might have the binary function symbol g(., -) taking two arguments: g(x, y)
refers to the grade obtained by student x in course y.

2.2 Predicate logic as a formal language

The discussion of the preceding section was intended to give an impression
of how we code up sentences as formulas of predicate logic. In this section,
we will be more precise about it, giving syntactic rules for the formation
of predicate logic formulas. Because of the power of predicate logic, the
language is much more complex than that of propositional logic.

The first thing to note is that there are two sorts of things involved in
a predicate logic formula. The first sort denotes the objects that we are
talking about: individuals such as a and p (referring to Andy and Paul) are
examples, as are variables such as x and v . Function symbols also allow us
to refer to objects: thus, m(a) and g(x, y) are also objects. Expressions in
predicate logic which denote objects are called terms.

The other sort of things in predicate logic denotes truth values; expressions
of this kind are formulas. Y (x, m(x)) is a formula, though x and m(x) are
terms.

A predicate vocabulary consists of three sets: a set of predicate symbols
9, a set of function symbols 9 and a set of constant symbols W. Each
predicate symbol and each function symbol comes with an arity, the number
of arguments it expects.

2.2.1 Terms

The terms of our language are made up of variables, constant symbols
and functions applied to those. Functions may be nested, as in m(m(x)) or
g(m(a), c) : the grade obtained by Andy's mother in the course c.

Definition 2.1 Terms are defined as follows.

Any variable is a term.
0 Any constant in %? is a term.

If t l , t2,. . . , t, are terms and f E .F has arity n, then f (t l , t2,. . . , t,) is a
term.
Nothing else is a term.

2.2 Predicate logic as a formal language

In Backus Naur form we may write

where x is a variable, c E V and f E 9 has arity n.

It is important to note that

rn The first building blocks of terms are constants and variables.
More complex terms are built from function symbols using as many
previously built terms as arguments as the function symbol in question
requires.

rn The notion of terms is dependent on the sets V and F. If you change
those, you change the set of terms.

We said that a predicate vocabulary is given by three sets, 9, F and
%?. In fact, constants can be thought of as functions which don't take any
arguments (and we even drop the argument brackets) - therefore, constants
live in the set 9 together with the 'true' functions which do take arguments.
From now on, we will drop the set %, since it is convenient to do so, and
stipulate that constants are 0-arity functions.

See Figure 2.1 for the parse tree of the term (2 - (s(x) + y)) * x, where +,
- and * are written in infix.

EXERCISES 2.1
1. Let 9 be {d, f,g), where d is a constant, f a function symbol with

two arguments and g a function symbol with three arguments. Which
of the following strings are terms over F? Draw the parse tree of
those strings which are indeed terms.

2. Let F be as in the last exercise.

(a) The length of a term over 9 is the length of its string rep-
resentation, where we count all commas and parentheses. For
example, the length of f (x,g(y,z), z) is 13. Can you list all
terms over 9 which do not contain any variables and whose
length is less than lo?

Predicate logic

Fig. 2.1. A parse tree representing an arithmetic term.

* (b) The height of a term over F is defined as 1 plus the length of
the longest path in its parse tree, as in Definition 1.31. List all
terms over F which do not contain any variables and whose
height is less than 4.

3. Let 9 be the set {+, -, *, s) where +, -, * are binary functions and
s is a unary function. Let V be the set {0,1,2,. . .). We write +, -, *
in infix notation rather than prefix notation (that is, we write x + y
instead of +(x,y), etc.). Figure 2.1 shows the parse tree of the term
(2 - (s(x) + y)) * x. Draw the parse tree of the term (2 - s(x)) + (y * x).
Compare your solution with the parse tree in Figure 2.1.

2.2.2 Formulas

Suppose that our predicate vocabulary is given by the sets of function
symbols 9 and predicate symbols 9. The choice of predicate, function and
constant symbols is driven by what we intend to describe. For example, if we
work on a database representing relations between our kin we might want
to consider

referring to being male, being female, being a son of . . . and being a daughter
o f Naturally, F and M are unary predicates (they take one argument)
whereas D and S are binary (taking two).

2.2 Predicate logic as a formal language 99

We already know what the terms over 9 are. Given that knowledge, we
can now proceed to define the formulas of predicate logic.

Definition 2.2 We define the set of formulas over (F,P) inductively, using
the already defined set of terms over 9:

0 If P is a predicate taking n arguments, n 2 1, and if tl, t2,. . . , t, are terms
over 9, then P(t l , t2,. . . , t,) is a formula.
If 4 is a formula, then so is (14).
If 4 and y are formulas, then so are (4 A y) , (4 V y) and (4 -, y).

0 If 4 is a formula and x is a variable, then (Vx 4) and (3x 4) are formulas.
Nothing else is a formula.

Note how the arguments given to predicates are always terms. Let us
stress again that the notion of 'formula' depends on the particular choice of
constant, function and predicate symbols. We can condense this definition
using Backus Naur form (BNF):

where P is a predicate of arity n, ti are terms and x is a variable. Recall
that each occurrence of 4 on the right-hand side of the ::= stands for any
formula.

Convention 2.3 For convenience, we retain the usual binding priorities agreed
upon in Convention 1.3 and add that Vy and 3y bind like 1. Thus, the order
is :

1, Vy and 3y bind most tightly;
0 then v and A;

then +.

We also often omit brackets around quantifiers, provided that doing so
introduces no ambiguities.

Predicate logic formulas can be represented by parse trees. For example,
Figure 2.2 represents the formula Vx ((P(x) + Q(x)) A S(x, y)).

Example 2.4 Consider translating the sentence

Every son of my father is my brother.

100 Predicate logic

into predicate logic. We use a constant m to represent 'me' (or '1'). This
example illustrates that coding facts about real life in predicate logic can
be done in a variety of ways. As before, the design choice is whether we
represent 'father' as a predicate or as a function symbol.

1. As a predicate. We choose a constant m for 'me', so m is a term, and
we choose further {S, F, B) as the set of predicates with meanings

S(X,Y) : x is a son of y

F(x, Y) : x is the father of y

B (~ , Y) : x is a brother of y.

Then the symbolic encoding of the sentence above is

saying: 'For all x and all y, if x is a father of m and if y is a son of
x, then y is a brother of m.'.

2. As a function. We keep m, S and B as above and write f for the
function which, given an argument, returns the corresponding father.
Note that this works only because fathers are unique, so f really is a
function as opposed to a mere relation.

The symbolic encoding of the sentence above is now

meaning: 'For all x, if x is a son of the father of m, then x is a brother
of m.'. This statement is much less complex insofar as it involves only
one quantifier.

EXERCISES 2.2
* 1. Let m be a constant, f a function symbol with one argument and S

and B two predicate symbols, each with two arguments. Which of the
following strings are formulas in predicate logic? Specify a reason for
failure for strings which aren't.

2.2 Predicate logic as a formal language

* 2. Use the predicates

A(x, y) : x admires y
B(x, y) : x attended y

P(x) : x is a professor
S(x) : x is a student
L(x) : x is a lecture

and the function symbol (= constant)

m : Mary

to translate the following into predicate logic:

(a) Mary admires every professor.
(The answer is not Vx A(m, P(x)); see exercise 1.)

(b) Some professor admires Mary.
(c) Mary admires herself.
(d) No student attended every lecture.
(e) No lecture was attended by every student.
(f) No lecture was attended by any student.

3. Let c and d be constants, f a function symbol with one argument, g
a function symbol with two arguments and h a function symbol with
three arguments. Further, P and Q are predicate symbols with three
arguments. Which of the following strings are formulas in predicate
logic? Specify a reason for failure for strings which aren't. Draw parse
trees of all strings which are formulas of predicate logic.

B(x, y) : x beats y
F(x) : x is an (American) football team

Q(x, y) : x is quarterback of y
L(x, y) : x loses to y

and the constant symbols

c : Wildcats
j : Jayhawks

Predicate logic

to translate the following into predicate logic.

(a) Every football team has a quarterback.
(b) If the Jayhawks beat the Wildcats, then the Jayhawks do not

lose to every football team.
(c) The Wildcats beat some team, which beat the Jayhawks.

* 5. Find appropriate predicates and their specification to translate the
following into predicate logic:

(a) All red things are in the box.
(b) Only red things are in the box.
(c) No animal is both a cat and a dog.
(d) Every prize was won by a boy.
(e) A boy won every prize.

6. Let F (x , y) mean that x is the father of y; M(x,y) denotes x is
the mother of y. Similarly, H(x, y), S(x, y), and B(x,y) say that x
is the husband/sister/brother of y, respectively. You may also use
constants to denote individuals, like 'Ed' and 'Patsy'. However, you
are not allowed to use any predicate symbols other than the above to
translate the following sentences into predicate logic:

(a) Everybody has a mother.
(b) Everybody has a father and a mother.
(c) Whoever has a mother has a father.
(d) Ed is a grandfather.
(e) All fathers are parents.
(f) All husbands are spouses.
(g) No uncle is an aunt.
(h) All brothers are siblings.
(i) Nobody's grandmother is anybody's father.
(j) Ed and Patsy are husband and wife.
(k) Carl is Monique's brother-in-law.

7. Formalise the following sentences in predicate logic, defining predicate
symbols as appropriate :

(a) Everybody who visits New Orleans falls in love with it.
(b) There is a trumpet player who lives in New Orleans, but who

does not like crawfish ktouffie.
(c) There are at least two saxophone players who were born in

New Orleans and who play better than every sax player in
New York city.

2.2 Predicate logic as a formal language 103

(d) At least two piano players from Louisiana other than Ellis
Marsalis play every week at my favourite club.

(e) If the Superdome is as least as high as the Royal Albert
Hall, then every concert hall which is as least as high as the
Superdome is as least as high as the Royal Albert Hall.

(f) If you eat a po-boy sandwich which has no chicken, no beef,
and no seafood in it, then you are eating alligator nuggets.

(g) Abita Amber is the best beer which is brewed in Louisiana.
(h) Mardi Gras is the biggest party in the world.
(i) Not everybody in Louisiana speaks French, but everybody in

Louisiana knows someone from Louisiana who does speak
French.

(j) Commander's Palace is not only the best restaurant in New
Orleans, but also the best one in the United States of America;
however, there are restaurants in France which are even better.

(k) There is only one restaurant where you can get better breakfast
than at the Bluebird Cafe.

(1) If you eat red beans and rice for lunch, then it must be a
Monday.

(m) Vaughn's is the coolest bar with the best live jazz in New
Orleans.

(n) Everybody who talks about the Crescent City actually refers
to New Orleans.

(0) Politics in New Orleans is as least as corrupt as that of all
Caribbean islands.

(p) Not every hurricane in New Orleans is a storm; some of them
are cocktails, but all of them are dangerous.

2.2.3 Free and bound variables

The introduction of variables and quantifiers allows us to express the notions
of all . . . and some . . . Intuitively, to verify that Vx Q(x) is true amounts to
replacing x by any of its possible values and checking that Q holds for each
one of them. There are two important and different senses in which such
formulas can be 'true'. First, if we fix a certain meaning of all predicate and
function symbols involved, then we can check whether a formula is true for
this particular scenario. For example, if a formula encodes the specifications
of a hardware circuit, then we would want to know whether it is true for the

104 Predicate logic

model of the circuit. Second, one sometimes would like to ensure that certain
formulas are true for all models. Consider (Vx P(x)) -t (3x P(x)); clearly, this
formula should be true no matter what model we are looking at. It is this
second kind of truth which is the primary focus of this chapter.

Unfortunately, things are more complicated if we want to define formally
what it means for a formula to be true in a given model. Ideally, we seek a
definition that we could use to write a computer program verifying that a
formula holds in a given situation.

To begin with, we need to understand that variables occur in different
ways. Consider the formula

We draw its parse tree in the same way as for propositional formulas, but
with two additional sorts of nodes:

The quantifiers Vx and 3y form nodes and have, like negation, just one
subtree.

0 Predicates, which are generally of the form P(tl , t2, . . . , t,), have the symbol
P as a node, but now P has n many subtrees, namely the parse trees of
the terms tl, t2,. . . , t,.

So in our particular case above we arrive at the parse tree in Figure 2.2. You
can see that variables occur at two different sorts of places. First, they appear
next to quantifiers V and 3 in nodes like Vx and 32; such nodes always have
one subtree, subsuming their scope to which the respective quantifier applies.

The other sort of occurrence of variables is leaf nodes containing variables.
If variables are leaf nodes, then they stand for values that still have to be
made concrete. There are two principal such occurrences:

1. In our example in Figure 2.2, we have three leaf nodes x. If we walk
up the tree beginning at any one of these x leaves, we run into the
quantifier Vx. This means that those occurrences of x are actually
bound to Vx so they represent, or stand for, any possible value of x.

2. In walking upwards, the only quantifier that the leaf node y runs into
is Vx but that x has nothing to do with y; x and y are different place
holders. So y is free in this formula. This means that its value has to
be specified by some additional information, for example, a location
in memory.

Definition 2.5 Let 4 be a formula in predicate logic. An occurrence of x
in 4 is free in 4 if it is a leaf node in the parse tree of 4 such that there

2.2 Predicate logic as a formal language

m

Fig. 2.2. A parse tree of a predicate logic formula.

is no path upwards from that node x to a node Vx or 3x. Otherwise, that
occurrence of x is called bound. For Vx 4, or 3x 4, we say that 6 - minus
any of its subformulas 3x y , or Vx y - is the scope of Vx, respectively 3x.

Thus, if x occurs in 4, then it is bound if, and only if, it is in the scope of 3x
or Vx; otherwise it is free. In terms of parse trees, the scope of a quantifier
is just its subtree, minus any subtrees which re-introduce a quantifier for
x; e.g. the scope of Vx in Vx(P(x) -+ 3xQ(x)) is P(x). It is quite possible,
and common, that a variable is bound and free in a formula. Consider the
formula

and its parse tree in Figure 2.3. The two x leaves in the subtree of Vx are
bound since they are in the scope of Vx, but the leaf x in the right subtree
of -+ is free since it is not in the scope of any quantifier Vx or 3x. Note,
however, that a single leaf either is under the scope of a quantifier, or it isn't.
Hence individual occurrences of variables are either free or bound, never
both at the same time.

2.2.4 Substitution

Variables are place holders so we must have some means of replacing them
with more concrete information. On the syntactic side, we often need to

Predicate logic

bound bound free

Fig. 2.3. A parse tree of a predicate logic formula illustrating free and bound
occurrences of variables.

replace a leaf node x by the parse tree of an entire term t. Recall from the
definition of formulas that any replacement of x may only be a term; it could
not be a predicate, or a more complex formula, for x serves as an argument
to a predicate one step higher up in the parse tree (see Definition 2.1 and
the grammar in (2.1)). In substituting t for x we have to leave untouched the
bound leaves x since they are in the scope of some 3x or Vx, i.e. they stand
for some unspeciJied or all values respectively.

Definition 2.6 Given a variable x, a term t and a formula 4 we define +[t/x]
to be the formula obtained by replacing each free occurrence of variable x
in 4 with t .

Substitutions are easily understood by looking at some examples. Let f be a
function symbol with two arguments and q5 the formula with the parse tree
in Figure 2.2. Then f (x,y) is a term and c$Lf(x,y)/x] is just 4 again. This
is true because all occurrences of x are bound in 4, so none of them gets
substituted.

Now consider q5 to be the formula with the parse tree in Figure 2.3. Here
we have one free occurrence of x in 4, so we substitute the parse tree of
f (x, y) for that free leaf node x and obtain the parse tree in Figure 2.4. Note
that the bound x leaves are unaffected by this operation. You can see that

2.2 Predicate logic as a formal language

Fig. 2.4. A parse tree of a formula resulting from substitution.

the process of substitution is straightforward, but requires that it be applied
only to the free occurrences of the variable to be substituted.

A word on notation: in writing 4[t/x], we really mean this to be the
formula obtained by performing the operation [tlx] on 4. Strictly speaking,
the chain of symbols 4[t/x] is not a logical formula, but its result will be a
formula, provided that 4 was one in the first place.

Unfortunately, substitutions can give rise to undesired side effects. In
performing a substitution 4[t/x], the term t may contain a variable y, where
free occurrences of x in 4 are under the scope of 3y or Vy in #. By carrying
out this substitution 4[t/x], the value y, which might have been fixed by a
concrete context, gets caught in the scope of 3y or Vy. This binding capture
overrides the context specification of the concrete value of y, for it will
now stand for 'some unspecified' or 'all ', respectively. Such undesired variable
captures are to be avoided at all costs.

Definition 2.7 Given a term t, a variable x and a formula 4, we say that t is
free for x in 4 if no free x leaf in 4 occurs in the scope of Vy or 3y for any
variable y occurring in t.

This definition is maybe hard to swallow. Let us think of it in terms of parse
trees. Given the parse tree of 4 and the parse tree of t, we can perform the

108 Predicate logic

substitution [tlx] on 4 to obtain the formula 4[t/x]. The latter has a parse
tree where all free x leaves of the parse tree of 4 are replaced by the parse
tree of t. What 't is free for x in 4' means is that the variable leaves of the
parse tree of t won't become bound if placed into the bigger parse tree of
4[t/x]. For example, if we consider x, t and 4 in Figure 2.4, then t is free in
x for 4 since the new leaf variables x and y of t are not under the scope of
any quantifiers involving x or y.

As an example where t is not free for x in 4, consider the 4 with parse
tree in Figure 2.5 and let t be f(y, y). Then we may substitute the leftmost
x leaf since it is not in the scope of any quantifier, but, in substituting the
x leaf in the left subtree of +, we introduce a new variable y in t which
becomes bound by Vy.

What if there are no free occurrences of x in 4 ? Inspecting the definition
of 't is free for x in 4', we see that every term t is free for x in 4 in that
case, since no free variable x of 4 is below some quantifier in the parse tree
of 4. So the problematic situation of variable capture in performing 4[t/x]
cannot occur. Of course, in that case +[t/x] is just 4 again.

It might be helpful to compare 't is free for x in 4' with a precondition of
calling a procedure for substitution. If you are asked to compute 4[t/x] in
your exercises or exams, then that is what you should do; but any reasonable
implementation of substitution used in a theorem prover would have to check
whether t is free for x in 4 and, if not, rename some variables with fresh
ones to avoid the undesirable capture of variables.

EXERCISES 2.3
1 Let 4 be

where P and Q are predicates with two arguments.

* (a) Draw the parse tree of 4.
* (b) Identify those variable leaves which occur free and those

which occur bound in 4.
(c) Is there a variable in 4 which has free and bound occurrences?

* (d) Consider the terms w (w is a variable), f (x) and g(y, z) , where
f and g are function symbols with one, respectively two, argu-
ments.

(i) Compute 4[wlxl, 4[wlyl, 4lf(x)/YI and 4MYY z)lzl.
(ii) Which of w, f(x) and g(y,z) are free for x in 4 ?
(iii) Which of w, f (x) and g(y,z) are free for y in 4 ?

2.3 Proof theory of predicate logic

the term j (y , y) is
not free for x in
this formula I I

Fig. 2.5. A parse tree for which a substitution has dire consequences.

(e) What is the scope of 3x in 4?
* (f) Suppose that we change 4 to 3x (P(y, z) A (Vx (lQ(x, x) v

P(x,z)))). What is the scope of 3x now?

2. (a) Draw the parse tree of the following logical formula y :

where P is a predicate with three arguments.
(b) Indicate the free and bound variables in that parse tree.
(c) List all variables which occur free and bound therein.
(d) Compute y [tlx], y [tly] and y [tlz], where t equals the term

g(f(g(y,y)),y). Is t free for x in y? Is t free for y in y ? Is t
free for z in v?

2.3 Proof theory of predicate logic
2.3.1 Natural deduction rules

Proofs in the natural deduction calculus for predicate logic are similar to
those for propositional logic in Chapter 1, except that we have new rules for
dealing with the quantifiers and with the equality symbol. Strictly speaking,

110 Predicate logic

we are overloading the previously established rules for the propositional
connectives A, V etc. That simply means that any proof rule of Chapter 1 is
still valid for logical formulas of predicate logic (we originally defined those
rules for logical formulas of propositional logic). As in the natural deduction
calculus for propositional logic, the additional rules for the quantifiers and
equality will come in two flavours: introduction and elimination rules.

The proof rules for equality

First, let us state the rules for equality. Here equality does not mean syntactic,
or intensional, equality, but equality in terms of computation results. In either
of these senses, any term t has to be equal to itself. This is expressed by the
introduction rule for equality:

=1
t = t

which is an axiom (as it does not depend on any premises). Notice that it
may be invoked only if t is a term (our language doesn't permit us to talk
about equality between formulas).

This rule is quite evidently sound, but it is not very useful on its own.
What we need is a principle that allows us to substitute equals for equals
repeatedly. For example, suppose that y * (w + 2) equals y * w + y * 2; then it
certainly must be the case that z 2 y * (w + 2) implies z 2 y * w + y * 2 and
vice versa. We may now express this substitution principle as the rule =e:

Note that tl and t2 have to be free for x in 4, whenever we want to apply
the rule =e (this is an example of a side condition of a proof rule).

Convention 2.8 Indeed, throughout this section, when we write a substitution
in the form 4[t/x], we implicitly assume that t is free for x in 4 ; for, as we
saw in the last section, a substitution doesn't make sense if this is not the
case.

We obtain proof

1 (x + l) = (l + x) premise

2 (x + 1 > 1) -+ (x + 1 > 0) premise

3 (1 + x > 1) + (1 + x > 0) =e 1,2

establishing the validity of the sequent

2.3 Proof theory of predicate logic 11 1

In this particular proof tl is (x+ I), t2 is (1 +x) and 4 is (x > 1) -t (x > 0).
We used the name =e since it reflects what this rule is doing to data: it
eliminates the equality in tl = t2 by replacing all tl in 4[tl/x] with t2.
This is a sound substitution principle, since the assumption that tl equals t2
guarantees that the logical meanings of 4[tl/x] and 4[t2/x] match.

The principle of substitution, in the guise of the rule =e, is quite powerful.
Together with the rule =i, it allows us to show the sequents

A proof for the first sequent is:

1 tl = t2 premise

where 4 is x = tl.

A proof for the second sequent is:

1 t2 = t3 premise

2 tl = t2 premise

3 tl = t3 =e 1,2

where 4 is tl = x, so in line 2 we have 4[t2/x] and in line 3 we obtain
4[t3/x], as given by the rule =e applied to lines 1 and 2. Notice how we
applied the scheme =e with several different instantiations.

Our discussion of the rules =i and =e has shown that they force equality
to be re$exive, symmetric and transitive. These are minimal and necessary
requirements for any sane concept of (extensional) equality. We leave the
topic of equality for now to move on to the proof rules for quantifiers.

EXERCISES 2.4
1. Prove the following sequents using, among others, the rules =i and

=e. Make sure that you indicate for each application of =e what the
rule instances 4, tl and t2 are.

(a) (y = 0) A (y = x) l- 0 = x
(b) tl = t2 t- (t +t2) = (t + t l)

(c) (x = O)V((x+x) > 0) k (y = (x+x)) + ((y > O)V(y = (O+x))).

112 Predicate logic

2. Recall that we use = to express the equality of elements in our models.
Consider the formula

3x 3y (1 (x = y) A (Vz ((z = x) v (z = y)))).

Although we have not yet formally defined what a model A for
predicate logic looks like, can you say intuitively what this formula
says about any such model A in plain English?

* 3. Write down a sentence 43 of predicate logic which intuitively holds
in a model A if, and only if, that model has exactly three concrete
values.

4. Write down a sentence 4<3 - of predicate logic which intuitively holds
in a model At' iff that model has at most three concrete values.

* 5. Can you find a sentence of predicate logic b,, which intuitively
holds exactly in those models which have only finitely many concrete
values? What 'limitation' of predicate logic causes problems in finding
such a sentence?

The proof rules for universal quantijication

The rule for eliminating V is the following:

It says: if you have V x 4, then you could replace the x in 4 by any term t
(given, as usual, the side condition that t be free for x in 4). The intuitive
soundness of this rule is evident: assuming that Vx 4 holds, we should
certainly be entitled to maintain that 4 [t / x] holds, where t is some term.

Recall that 4 [t / x] is obtained by replacing all free occurrences of x in 4
by t . You may think of the term t as a concrete instance of x. Since 4 is
assumed to hold for all x, that should also be the case for any term t . To see
the necessity of the proviso that t be free for x in 4, consider the case that
4 is

and the term to be substituted for x is y. Let's suppose we are reasoning
about numbers with the usual 'smaller than' relation. The statement Vx q5
then says that for all numbers n there is some bigger number m, which is
indeed true of integers or real numbers. However, $Ly/x] is the formula

2.3 Proof theory of predicate logic 113

saying that there is a number which is bigger than itself. This is wrong;
and we must not allow a proof rule which derives semantically wrong things
from semantically valid ones. Clearly, what went wrong was that y became
bound in the process of substitution; y is not free for x in 4. Thus, in going
from Vx 4 to +[t/x], we have to enforce the side condition that t be free for
x in 4.

The rule Vxi is a bit more complicated. It employs a proof box similar to
those we have already seen in natural deduction for propositional logic, but
this time the box is to stipulate the scope of the 'dummy variable' xo rather
than the scope of an assumption. The rule Vxi is written

It says: if, starting with a 'fresh' variable xo, you are able to prove some
formula with xo in it, then (because xo is .fresh) you can derive Vx 4. The
important point is that xo is a new variable which doesn't occur anywhere
outside the box ; we think of it as an arbitrary term. Since we assumed nothing
about this xo, anything would work in its place; hence the conclusion Vx 4.

It takes a while to understand this rule, since it seems to be going from
the particular case of 4 to the general case Vx 4. The side condition, that
xo does not occur outside the box, is what allows us to get away with
this. In particular, the formula 4[xo/x] may only depend on assumptions or
premises which occur outside the proof box opened by the dummy variable
xo. These restrictions (a side condition) imply that the case we have for # is,
after all, quite general.

To understand this, think of the following analogy. If you want to prove
to someone that you can (say) split a tennis ball in your hand by squashing
it, you might say 'OK, give me a tennis ball and I'll split it'. So we give you
one and you do it. But how can we be sure that you could split any tennis
ball in this way? Of course, we can't give you all of them, so how could we
be sure that you could split any one? Well, we assume that the one you did
split was an arbitrary, or 'random', one, i.e. that it wasn't special in any way
(like a ball which you had 'prepared' beforehand); and that is enough to
convince us that you could split any tennis ball. Our rule says that if you
can prove 4 about an xo that isn't special in any way, then you could prove
it for any x whatsoever.

To put it another way, the step from 4 to Vx 4 is legitimate only if we

114 Predicate logic

have arrived at 4 in such a way that none of its assumptions contain x
as a free variable. Any assumption which has a free occurrence of x puts
constraints on such an x. For example, the assumption bird(x) confines x to
the realm of birds and anything we can prove about x using this formula
will have to be a statement restricted to birds and not about anything else
we might have had in mind.

It is time we looked at an example of these rules at work. Here is a proof
of the sequent

Vx (P (x) -+ Q(x)), Vx P (x) I- Vx Q(x) :

1 Vx (P (x) -+ Q(x)) premise

2 Vx P (x) premise

6 vx Q(x) Vx i 3-5

Thc structure of this pruuf is guided by the fact that the conclusion is a
V formula. To arrive at this, we will need an application of Vx i, so we set
up the box controlling the scope of xo. The rest is now mechanical: we
prove VxQ(x) by proving Q(xo); but the latter we can prove as soon as
we can prove P(xo) and P(xo) + Q(xo), which themselves are instances of
the premises (obtained by Ve with the term xo). Note that we wrote the
name of the dummy variable to the left of the first proof line in its scope
box.

Here is a simpler example which uses only Vxe: we show the sequent

for any term t:

1 p(t) premise

2 Vx (P(x) -+ lQ(x)) premise

Note that we invoked Vxe with the same instance t as in the assumption
P(t). If we had invoked Vxe with y, say, and obtained P(y) -+ lQ(y), then
that would have been valid, but it would not have been helpful in the case

2.3 Proof theory o f predicate logic 115

that y was different from t. Thus, Vxe is really a scheme of rules, one for
each term t (free for x in +), and we should make our choice on the basis of
consistent pattern matching. Further, note that we have rules Vxi and Vxe
for each variable x. In particular, there are rules Vy i, Vy e and so on. We will
write Vi and Ve when we speak about such rules without concern for the
actual quantifier variable.

Notice also that, although the square brackets representing substitution
appear in the rules Vi and Ve, they do not appear when we use those rules.
The reason for this is that we actually carry out the substitution that is asked
for. In the rules, the expression 4[t/x] means: '4, but with free occurrences
of x replaced by t'. Thus, if 4 is P(x,y) -+ Q(y,z) and the rule refers to
4[a/y], we carry out the substitution and write P(x, a) -+ Q(a, z) in the proof.

A helpful way of understanding the universal quantifier rules is to com-
pare the rules for V with those for A. The rules for V are in some sense
generalisations of those for A; whereas A has just two conjuncts, V acts
like it conjoins lots of formulas (one for each substitution instance of its
variable). Thus, whereas Ai has two premises, Vx i has a premise 4[xo/x] for
each possible 'value' of xo. Similarly, where and-elimination allows you to
deduce from 4 A y, whichever of 4 and y, you like, forall-elimination allows
you to deduce $[t/x] from Vx 4, for whichever t you like. To say the same
thing another way: think of Vx i as saying: to prove Vx 4, you have to prove
4[xo/x] for every possible value xo; while Ai says that to prove A 42 you
have to prove qbi for every i.

The proof rules for existential quantijication

The analogy between V and A extends also to 3 and V; and you could even
try to guess the rules for 3 by starting from the rules for v and applying
the same ideas as those that related A to V. For example, we saw that the
rules for or-introduction were a sort of dual of those for and-elimination; to
emphasise this point, we could write them as

where k can be chosen to be either 1 or 2.
Therefore, given the form of forall-elimination, we can infer that exists-

introduction must be simply

Indeed, this is correct: it simply says that we can deduce 3x 4 whenever we

116 Predicate logic

have #~[t/x] for some term t (naturally, we impose the side condition that t
be free for x in 4).

In the rule 3 , we see that the formula 4[t/x] contains, from a computa-
tional point of view, more information than 3x 4. The latter merely says that
4 holds for some, unspecified, value of x; whereas 4[t/x] has a witness t at
its disposal. Recall that the square-bracket notation asks us actually to carry
out the substitution. However, the notation 4[t/x] is somewhat misleading
since it suggests not only the right witness t but also the formula 4 itself,
For example, consider the situation in which t equals y such that 4[y/x] is
y = y. Then you can check for yourself that 4 could be a number of things,
like x = x or x = y. Thus, 3x 4 will depend on which of these 4 you were
thinking of.

Extending the analogy between 3 and V, the rule Ve leads us to the
following formulation of 3e :

Like ve, it is a case analysis. The reasoning goes: we know 3x 4, so 4 is true
for at least one 'value' of x. So we do a case analysis over all those possible
values, writing xo as a generic value representing them all. If assuming
4[xo/x] allows us to prove some x which doesn't mention xo, then this 1
must be true whichever xo it was. And that's precisely what the rule 3e allows
us to deduce. Of course, we impose the side condition that xo can't occur
outside the box (therefore, in particular, it cannot occur in x). The box is
controlling two things: the scope of xo and also the scope of the assumption
4 [xolxl.

Just as Ve says that to use q51 V 42, you have to be prepared for either of
the 4i, so 3e says that to use 3x 4 you have to be prepared for any possible
4[xo/x]. Another way of thinking about 3e goes like this: if you know 3x4
and you can derive some x from 4[xo/x], i.e. by giving a name to the thing
you know exists, then you can derive x even without giving it the name.

The rule 3xe is also similar to Ve in the sense that both of them are
elimination rules which don't have to conclude a subformula of the formula
they are about to eliminate. Please verify that all other elimination rules
so far have this subformula property1. This property is computationally
very pleasant, for it allows us to narrow down the search space for a

' For Vxe we perform a substitution [t l x] , but it preserves the logical structure of 4.

2.3 Proof theory of predicate logic 117

proof dramatically. Unfortunately, 3xe, like its cousin Ve, is not of that
computationally benign kind.

Let us practice these rules on a couple of examples. Certainly, we should
be able to prove

In the proof

1 Vx 4 premise

2 ~ [X / X] Vxe 1

3 3 x 4 3 x i 2

we chose t to be x with respect to both Vxe and to 3x i (and note that x is
free for x in 4 and that 4[x/x] is simply 4 again).

A more complicated example is the sequent

which can be proved by

1 Vx (P (x) + Q(x)) premise

2 3x P(x) premise

3 assumption

4

5 -+e 4,3

The motivation for introducing the box in line 3 of this proof is the existential
quantifier in the premise 3xP(x) which has to be eliminated. Notice that
the 3 in the conclusion has to be introduced within the box and observe the
nesting of these two steps. The formula 3x Q(x) in line 6 is the instantiation
of x in the rule 3e and it is easy to check that it does not contain an
occurrence of xo, as required by the condition that there be no xo outside
the box.

118 Predicate logic

The almost identical 'proof'

Vx (P (x) -, Q(x)) premise

3x P (x) premise

assumption

Qbo) +e 4,3

Q(xo) 3x e 2,3-5

3x Q(x) 3x i 6

is not a legal proof; line 6 allows the fresh parameter xo to escape the scope
of the box which declares it. This is not permissible and we will see on
page 120 an example where such illicit use of proof rules results in unsound
arguments.

A sequent with a slightly more complex proof is

which could model some argument such as

If all quakers are reformists and if there is a protestant who is also a quaker, then
there must be a protestant who is also a reformist.

One possible proof strategy is to assume P(xo) A Q(xo), get the instance
Q(xo) + R(xo) from Vx (Q(x) + R(x)) and use Ae2 to
Q(xo), which gives us R(xo) via -+e . . . :

Vx (Q(x) + R(x)) premise

3x (P(x) A Q(x)) premise

xo Pbo) A Q(xo) assumption

Qbo) + W o) Vx e 1

Q(x0) Ae2 3

Rho) +e 4,5

P(x0) Ael 3

Pbo) A Rho) Ai 7,6

3x(P(x)AR(x)) 3x i8

3x (P(x) A R(x)) 3x e 2,3-9

get our hands on

2.3 Proof theory of predicate logic 119

Note the strategy of this proof: We list the two premises. The second
premise is of use here only if we apply 3xe to it. This sets up the proof box
in lines 3-9 as well as the fresh parameter name xo. Since we want to prove
3x(P(x) A R(x)), this formula has to be the last one in the box (our goal)
and the rest involves Vx e and 3x i.

The rules Vi and 3e both have the side condition that the dummy variable
cannot occur outside the box in the rule. Of course, these rules may still
be nested, by choosing another name (e.g. yo) for the dummy variable. For
example, we will prove the sequent

3x P(x), Vx VY (P (4 -, Q(Y 1) I- VY Q(Y).

(Look how strong the second premise is, by the way: given any x, y, if P(x),
then Q(y). This means that, if there is any object with the property P , then
all objects shall have the property Q.) The proof goes as follows: we take
an arbitrary yo and prove Q(yo); this we do by observing that, since some x
satisfies P , so by the second premise any y satisfies Q:

1 3x P (x) premise

2 VxVy (P(x) -t Q(y)) premise

There is no special reason for picking xo as a name for the dummy variable
we use for Vx and 3x and yo as a name for Vy and 3y. We do this only
because it makes it easier for us humans. Again, study the strategy of this
proof. We ultimately have to show a Vy formula which requires us to use
Vyi, i.e. we need to open up a proof box (lines 3-8) whose subgoal is to
prove a generic instance Q(yo). Within that box we want to make use of the
premise 3x P(x) which results in the proof box set-up of lines 4-7. Notice
that, in line 8, we may well move Q(yo) out of the box controlled by xo.

We have emphasised the point that the dummy variables in the rules 3e
and Vi must not occur outside their boxes. Here is an example which shows
how things would go wrong if we didn't have this side condition. We could

120 Predicate logic

prove the sequent

3xP(x), vx (P(x) -, Q(x)) I- VY Q(Y)

which is intuitively unsound. (Compare it with the previous sequent; the
second premise is now much weaker, allowing us to conclude Q only for
those objects for which we know P.) Here is an alleged 'proof':

3x P(x) premise

Vx (P (x) + Q(x)) premise

The last step introducing Vy is not the bad one; that step is fine. The bad one
is the second from last one, concluding Q(xo) by 3xe and violating the side
condition that xo may not leave the scope of its box. You can try a few other
ways of 'proving' this sequent, but none of them should work (assuming that
our proof system is sound with respect to semantic entailment, which we
define in the next section). Without this side condition, we would also be
able to prove that 'all x satisfy the property P as soon as one of them does
so', a semantic disaster of biblical proportions!

2.3.2 Quantifier equivalences

We have already hinted at semantic equivalences between certain forms of
quantification. Now we want to provide formal proofs for some of the most
commonly used quantifier equivalences. Quite a few of them involve several
quantifications over more than just one variable. Thus, this topic is also good
practice for using the proof rules for quantifiers in a nested fashion.

For example, the formula Vx Vy 4 should be equivalent to Vy Vx 4 since
both say that 4 should hold for all values of x and y. What about (Vx 4) A

(Vx ly) versus Vx (4 A ly)? A moment's thought reveals that they should have
the same meaning as well. But what if the second conjunct does not start
with Vx? So what if we are looking at (Vx 4) A y in general and want to
compare it with Vx (4 A y)? Here we need to be careful, since x might be
free in y and would then become bound in the formula Vx (4 A y).

2.3 Proof theory of predicate logic 121

Here are some quantifier equivalences which you should become familiar
with. (Recall that we wrote i t - 4 2 in Chapter 1 as an abbreviation for
41 t- 4 2 and 4 2 I-- $1.)

Theorem 2.9 Let 4 and y be formulas of predicate logic. Then we have the
following equivalences:

1. (a) 1Vx 4 i t - 3x 1 4
(b) 1 3 ~ 4 -k VX 14.

2. Assuming that x is not free in y:

(a) V x 4 A v 4- Vx(4Ay)
Remember that Vx 4 A y is implicitly bracketed as (Vx 4) A y,
by virtue of the binding priorities.

(b) V ~ ~ V Y ++x(4Vy)
(c) 3 x 4 W -IF 3 x (4 W)
(4 3 x 4 v v i t - 3 3 x 4 v v)
(el Vx(y --, 4) -It- --,Vx#
(f) 3x($4lp)-it-Vxq5+lp.
(8) 3x(y + 4) +I- --, 3 x 4
(h) V x (4 - + y) i t - 3 x 4 + l p .

3. (a) VxdAVxy i F V x (4 A y)
Remember that Vx 4 A Vx y is implicitly bracketed as (Vx 4) A

(Vx y), by virtue of the binding priorities.
(b) 3x 4 v 3x y -IF 3x (4 v y).

4. (a) Vx Vy 4 i t - Vy Vx 4
(b) 3x 3y 4 -IF 3y 3x 4.

PROOF: We will prove most of these sequents; the proofs for the remaining
ones are straightforward adaptations and are left as exercises. Recall that we
sometimes write I to denote any contradiction.

1. (a) We will lead up to this by proving two simpler sequents first:
-(pl A p2) t- ~ p 1 V lp:! and then 1Vx P(x) I-- 3x lP(x) . The
reason for proving the first of these is to illustrate the close
relationship between A and V on the one hand and V and 3
on the other - think of a model with just two elements 1 and
2 such that pi (i = 1,2) stands for P(x) evaluated at i. The
idea is that proving this propositional sequent should give us
inspiration for proving the second one of predicate logic. The
reason for proving the latter sequent is that it is a special case
(in which $ equals P(x)) of the one we are really after, so

Predicate logic

again it should be simpler while providing some inspiration.
So, let's go.

'(PI A ~ 2) premise

4 1 ~ 1 V - 7 ~ 2) assumption

assumption

lp1 V lp2 Vil 3 lp1 V lp2 Vi2 3

PI RAA 3-5 p2 RAA 3-5

'PI V l P 2 RAA 2-8

You have seen this sort of proof before, in Chapter 1. It is an
example of something which requires proof by contradiction,
or --e, or LEM (meaning that it simply cannot be proved
in the reduced natural deduction system which discards these
three rules) - in fact, we have used the rule RAA three
times.
Now we prove +xP(x) I- 3 x l P (x) similarly, except that
where the rules for A and V were used we now use those for
V and 3:

1

2

3

4

5

6

7

8

9

10

1Vx P (x) premise

1 3 ~ l P (x) assumption

p (xo) RAA4-6 1
Vx P (x) Vx i 3-7

3x i P (x) RAA 2-9

2.3 Proof theory of predicate logic 123

You will really benefit by spending time understanding the way
this proof mimics the one above it. This insight is very useful
for constructing predicate logic proofs: you first construct a
similar propositional proof and then mimic it.

Next we prove 1Vx 4 I- 3x 1 4 :

4 14 [xo/x] assumption

5 3xi 4

6 l e 5,2

1 1Vx 4 premise

8 Vx i 3-7

9 l e 8 , l

10 3~ 14 RAA 2-9

2

The reverse sequent 3x 14 I- 1Vx 4 is more straightforward,
for it does not involve proof by contradiction, -.lye, or LEM.
Unlike its converse, it has a constructive proof which the intui-
tionists do accept. We could again prove the corresponding
propositional sequent, but we leave that as an exercise.

-3x -4 assumption I

3

4 -4 [xO/x] assumption

5

1 3x 14 assumption

2 ' 4 ~ 4 assumption 1

Predicate logic

(a) The sequent Vx 4 A y t Vx (4 A W) can be proved thus:

(vx 4) A v premise

VX 4 Ael 1

W Ae2 1

xo

4 [XOIXI Vxe 2

4 [x o l x l m Ai5,3

(4 A y)[xo/x] identical to 6, since x not free in .y,

vx (6 A W) Vx i 4-7

The reverse argument can go like this:

xo

(4AW)[xolxl Vxe 1

4[xo/x] A w identical to 3, since x not free in y,

W Ae2 3

4 [XO/X] Ael 3

Notice that the use of Ai in the last line is permissible, because ty was
obtained for any instantiation of the formula in line 1.

3. (b) The sequent (3x 4) V (3x y) F 3x (4 V y) has to be proved using
the rule Ve; so we have two principal cases, each of which
requires the rule 3x i:

2

3

4

5

6

7

8 3x(4 V W) ve 1,2-7

3x 4

4 [xo /x lv~ [xo/xI

3x(4vW)

3x w assumpt.

xo Y [xolxl assumpt.

~~xolxlvW[xolxl v i 3

(4 V W)[xo/x] iden tical

Md) V W) 3xi 5

3x(4 v W) 3x e 2,3-6

2.3 Proof theory of predicate logic 125

The converse assumes 3x (4 V y) so its proof has to use 3xe
as its last rule; for that rule, we need to assume 4 V y as a
temporary assumption and need to conclude (3x 4) V (3xy)
from those data; of course, the assumption 4 V y, requires the
usual case analysis :

4[xo/xI V w [XO/X] identical

assumption

3 x 4 V 3xw ve 3,4-6

4. (b) In assuming 3x 3y 4, we have to nest 3x e and 3y e to conclude
3y 3x 4. Of course, we have to obey the format of these elimi-
nation rules as done below:

3 x 3 ~ 4 premise

xo (3y 4)[xo/x] assumption

3y (4[xo/x]) identical, since x, y different variables

YO 4 [xolxl bolyl assumption

4Lvo/y] [xo/x] identical, since x, y, xo, yo different variables

3x 4 ~ o / Y] Vxi 5

3~ 3x 4 Vyi 6

3~ 3x 4 3y e3,4-7

3Y 3x 4 3x el, 2-8

The converse is proven in the same way by swapping the roles
of x and y.

EXERCISES 2.5
1. The rules for V are very similar to those for A and those for 3 are just

like those for v.

126 Predicate logic

(a) Find a (propositional) proof for 4 -+ (ql A q2) k (4 -+ ql) A

(4 -, q2).
(b) Find a (predicate) proof for 4 --, VxQ(x) k Vx(4 --, Q(x)),

provided that x is not free in 4.
(Hint: whenever you used A rules in the (propositional) proof
of the previous item, use V rules in the (predicate) proof.)

(c) Find a proof for Vx (P(x) -+ Q(x)) 1- Vx P(x) --, Vx Q(x).
(Hint : try (~ 1 --, q1) A (~ 2 + q2) I- P1 A P2 --, 41 A q2 first.)

* (d) Prove Vx (P (x) A Q(x)) 1- Vx P (x) A Vx Q(x).
* (e) Prove Vx P(x) V Vx Q(x) k Vx (P(x) V Q(x)).
* (f) Prove 3x (P(x) A Q(x)) k 3x P(x) A 3x Q(x).
* (g) Prove 3x F(x) V 3x G(x) 3x (F(x) V G(x)).

(h) Prove Vx Vy (S(y) -* F(x)) k 3yS(y) + Vx F(x).

2. What is the propositional logic sequent that corresponds to 3x 1 4 I-
7Vx q5? Prove it.

3. Provide proofs for the following sequents:

4. The sequents below look a bit tedious, but in proving them you make
sure that you really understand how to nest the rules:

* (a) VxVy P(x,y) VuVv P(u,v)
(b) 3x 3y F(x, y) k 3u 3v F(u, v)

* (c) 3xVyP(x,y) tVy3xP(x,y).
5. In the following exercises, involving the proof rules for quantifiers,

whenever you use a rule, you should mention how the relevant syn-
tactic restrictions are satisfied.

(a) Prove one direction of l(b) of Theorem 2.9: 13x 4 I- Vx 16.
(b) Prove 2(b), 2(c), 2(d), 2(e) and 2(f) of Theorem 2.9.
(c) Prove 3(a) of Theorem 2.9: (Vx 4) A(Vx y) i t - Vx (4 A y); recall

that you have to do two separate proofs.
(d) Prove both directions of 4(a) of the last theorem: VxVy 4 +I-

vy Vx 4.
6. Prove the following sequents in predicate logic, where P and Q are

predicates with one argument:

2.3 Proof theory of predicate logic

7. Just like natural deduction proofs for propositional logic, certain
things that look easy can be hard to prove for predicate logic. Typ-
ically, these involve the 11 rule. The patterns are the same as in
propositional logic :

(a) Proving p V q I- l (1 p A l q) is quite easy. Try it.
(b) Show 3xP(x) t -tVxlP(x).
(c) Proving -.(-.lp A l q) t p V q is hard; you have to try to prove

+p V q) first and then use the lie rule. Do it.

* (d) Prove 1Vx 1 P (x) t- 3x P(x).
* (e) Prove Vx 1 P (x) k 4 x P (x).
* (f) Prove -.l3xP(x) + VxlP(x).

8. The proofs of the sequents below combine the proof rules for equality
and quantifiers. We write 4 ++ y, as an abbreviation for (4 -+ y)) A

(W -+ 4).
* (a) P (b) t Vx (x = b -+ P (x))

(b) P(b), VxVy (P(x) A P(y) -+ x = y) Vx (P(x) ++ x = b)

* (c) 3x 3y (H(x, y) V H(y, x)), 73x H(x, x) I- 3x3y 4 x = Y)
(d) Vx (P(x) tt x = b) P(b) A VxVy (P(x) A P(y) -+ x = y).

9. Prove the following sequents in predicate logic:

10. Show by natural deduction:

Predicate logic

1 1. Prove the following sequents in predicate logic :

12. Translate the following argument into a sequent in predicate logic
using a suitable set of predicate symbols:
If there are any tax payers, then all politicians are tax payers. If there are
any philanthropists, then all tax payers are philanthropists. So, if there are any
tax-paying philanthropists, then all politicians are philanthropists.

Now come up with a proof of that sequent in predicate logic.
13. Discuss in what sense the equivalences of Theorem 2.9 form the basis

of an algorithm which pushes quantifiers to the top of a formula's
parse tree.

2.4 Semantics of predicate logic

Having seen how natural deduction of propositional logic can be extended
to the predicate case, let's now look at how the semantics of predicate logic
works. Just like in the propositional case, the semantics should provide a sep-
arate, but ultimately equivalent, characterisation of the logic. By 'separate',
we mean that the meaning of the connectives is defined in a different way; in
proof theory, they were defined by proof rules providing an operative expla-
nation. In semantics, we expect something like truth tables. By 'equivalent',
we mean that we should be able to prove soundness and completeness, as
we did for propositional logic (although a fully fledged proof of soundness
and completeness for predicate logic is beyond the scope of this book).

Before we begin describing the semantics of predicate logic, let us look
more closely at the real difference between a semantic and a proof-theoretic
account. In proof theory, the basic object which is constructed is a proof.
Let us write F as a shorthand for lists of formulas &, cb2,. . . , 4,. Thus, to
show that r I- 6, we need to provide a proof of 4 from T. Yet, how can we
show that 6 is not a consequence of r? Intuitively, this is harder; how can

2.4 Semantics of predicate logic 129

you possibly show that there is no proof of something? You would have to
consider every 'candidate' proof and show it is not one. Thus, proof theory
gives a 'positive' characterisation of the logic; it provides convincing evidence
for assertions like r I- 4, but it is not very useful for establishing I- Y 4.

Semantics, on the other hand, works in the opposite way. To show that 4
is not a consequence of T is the easy bit: you simply give a model of T which
is not a model of 4. Showing that 4 is a consequence of T, on the other
hand, is harder in principle. For propositional logic, you need to show that
every valuation (an assignment of truth values to all atoms involved) that
makes r true also makes 4 true. If there is a small number of valuations, this
is not so bad. However, when we look at predicate logic, we will find that
there are infinitely many models to consider (the notion corresponding to
the valuation in propositional logic is called a model). Thus, in semantics, we
have a 'negative' characterisation of the logic. We find establishing assertions
of the form r t+ 4 (4 is not a semantic entailment of all formulas in r) easier
than establishing r t= 4 (4 is a semantic entailment of T), for in the former
case we need only talk about one model, whereas in the latter we have to
talk about infinitely many.

All this goes to show that it is important to study both proof theory and
semantics. For example, if you are trying to show that 4 is not a consequence
of and you have a hard time doing that, you might want to change your
strategy for a while by trying to prove r t- 4. If you find a proof, you
know for sure that 4 is a consequence of r. If you can't find a proof, then
your attempts at proving it often provide insights which lead you to the
construction of a counter example. The fact that proof theory and semantics
are equivalent is amazing, but it does not stop them having separate roles in
logic, each meriting close study.

2.4.1 Models

Recall how we evaluated formulas in propositional logic. For example, given
the propositional formula

(P V 1 q) -, (q + P)

we evaluated this expression by computing a truth value (T or F) for it,
based on a given valuation (assumed truth values for p and q). This activity
is essentially the construction of one line in the truth table of (p v y q) +

(q + p). How can we evaluate formulas in predicate logic? We 'enrich' the
formula above to

130 Predicate logic

Could we simply assume truth values for P(x), Q(y), Q(x) and P(y) and
compute a truth value as before? Not quite, since we have to reflect the
meaning of the quantifiers Vx and 3y, their dependences and the actual
parameters of P and Q - a formula Qx 3y R(x, y) generally means something
else other than 3y Vx R(x, y); why? The problem is that variables are place
holders for any, or some, unspecified concrete value. Such values can be
of almost any kind: students, birds, numbers, complicated mathematical
objects, data structures, programs and so on.

Thus, if we encounter a formula 3y y , we try to find some instance of
y (some concrete value) such that y holds for that particular instance of
y. If this succeeds (i.e. there is such a value of y for which y holds), then
3y y, evaluates to T; otherwise (i.e. there is no concrete value of y which
realises y,) it returns F. Dually, evaluating Vx y amounts to showing that
y evaluates to T for all possible values of x; if this is successful, we know
that Vx y, evaluates to T; otherwise (i.e. there is some value of x such that
y computes F) it returns F. Of course, such evaluations of formulas require
a fixed universe of concrete values, the things we are, so to speak, talking
about. Thus, the truth value of a formula in predicate logic depends on, and
varies with, the actual choice of values and the meaning of the predicate and
function symbols involved.

If variables can take on only finitely many values, we can write a program
that evaluates formulas in a compositional way. If the root node of q5 is A,
V, + or 1, we can compute the truth value of 4 by using the truth table of
the respective logical connective and by computing the truth values of the
subtree(s) of that root, as discussed in Chapter 1. If the root is a quantifier,
we have sketched above how to proceed. This leaves us with the case of
the root node being a predicate symbol P (in propositional logic this was
an atom and we were done already). Such a predicate requires n arguments
which have to be terms tl, t2,. . . , t,. Therefore, we need to be able to assign
truth values to formulas of the form P(tl, t2,. . . , t,).

For formulas P(tl , t 2 , . . . , t,), there is more going on than in the case of
propositional logic. For n = 2, the predicate P could stand for something
like 'the number computed by tl is less than, or equal to, the number
computed by tz'. Therefore, we cannot just assign truth values to P in a
random fashion. We require a model of all function and predicate symbols
involved. For example, terms could denote real numbers and P could denote
the relation 'less than or equal to' on the set of real numbers.

Definition 2.10 Let 9 be a set of function symbols and 9 a set of predicate

2.4 Semantics o f predicate logic 131

symbols, each symbol with a fixed number of required arguments. A model
A' of the pair (9,Y) consists of the following set of data:

1. A non-empty set A, the universe of concrete values;
2. for each f E F with n arguments a concrete function

from An, the set of n-tuples over A, to A; and
3 . for each P E -9 with n arguments a subset pA c An of n-tuples over

A.

The distinction between f and f A and between P and P-" is most important.
The symbols f and P are just that: symbols, whereas fd and P& denote a
concrete function and relation in a model A , respectively.

def Example 2.11 Let F {+, *, -) and 9 = {=, 2, <,zero), where +, * and -
take two arguments and s one; and where =, 5 and < are predicates with
two arguments and zero is a predicate with just one argument. We choose
as a model dl the following:

1. The non-empty set A is the set of real numbers.
2. The functions f A , *& and -A take two real numbers as arguments

and return their sum, product and diflerence, respectively.
3. The predicates =&, @ and <=" model the relations equal to, less

than and strictly less than, respectively. The predicate zero./ holds for
r iff r equals 0.

Example 2.12 Let F g {e, .} and 9 g (1, where e is a constant, - is a
function of two arguments and I is a predicate in need of two arguments
as well. Again, we write - and I in infix notation as in

(tl ' t2) 1 (t . t).
The model A we have in mind has as set A all binary strings, finite words
over the alphabet (0, I), including the empty string denoted by E. The
interpretation eel of e is just the empty word e. The interpretation A' o f . is
the concatenation of words. For example, 0110 1110 equals 01 101 110. In
general, if ala2.. . ak and hlb2.. . bn are such words with ai, ki E (0, I), then
ala2.. . ak bl b2.. . bn equals ala2.. . akblb2.. . b,. Finally, we interpret I as
the pre$x ordering of words. We say that sl is a preJx of s2 if there is a binary
word s3 such that sl .A s3 equals sz. For example, 011 is a prefix of 01 1001
and 011, but 010 is not. Thus, is the set {(sl,s2) I sl is a prefix of s2).

132 Predicate logic

Here are some formulas in predicate logic which we want to check on this
model informally :

In our model, the formula

Vx((x I x . e) A (x . e I x))

says that every word is a prefix of itself concatenated with the empty word
and conversely. Clearly, this holds in our model, for s .M c is just s and
every word is a prefix of itself.
In our model, the formula

says that there exists a word s that is a prefix of every other word. This is
true, for we may chose 6 as such a word (there is no other choice in this
case).
In our model, the formula

says that every word has a prefix. This is clearly the case and there are in
general multiple choices for y, which are dependent on x.
In our model, the formula VxVy Vz ((x I y) -+ (x . z 5 y . z)) says that
whenever a word sl is a prefix of s2, then sls has to be a prefix of szs for
every word s. This is clearly not the case. For example, take sl as 01, s2 as
01 1 and s to be 0.

0 In our model, the formula

73x vy ((x 5 y) -, (y I x))

says that there is no word s such that whenever s is a prefix of some other
word sl, it is the case that sl is a prefix of s as well. This is true since there
cannot be such an s. Assume, for the sake of argument, that there were
such a word s. Then s is clearly a prefix of SO, but SO cannot be a prefix
of s since SO contains one more bit than s.

It is crucial to realise that the notion of a model is extremely liberal and
open-ended. All it takes is to choose a non-empty set A, whose elements
model real-world objects, and a set of concrete functions and relations, one
for each function, respectively predicate, symbol. The only mild requirement
imposed on all of this is that the concrete functions and relations on A have
the same number of arguments as their syntactic counterparts.

However, you, as a designer or implementor of such a model, have the
responsibility of choosing your model wisely. Your model should be a

2.4 Semantics of predicate logic 133

sufficiently accurate picture of whatever it is you want to model, but at the
same time it should abstract away (= ignore) aspects of the world which are
irrelevant from the perspective of your task at hand.

For example, if you build a database of family relationships, then it would
be foolish to interpret father-oflx, y) by something like 'x is the daughter of
y'. By the same token, you probably would not want to have a predicate
for 'is taller than', since your focus in this model is merely on relationships
defined by birth. Of course, there are circumstances in which you may want
to add additional features to your database.

Given a model A%! for a pair (9,P) of function and predicate symbols,
we are now almost in a position to formally compute a truth value for
all formulas in predicate logic which involve only function and predicate
symbols from (F,Y). There is still one thing, though, that we need to
discuss. Given a formula Vx 4 or 3x 4, we intend to check whether 4 holds
for all, respectively some, value a in our model. While this is intuitive, we
have no way of expressing this in our syntax: the formula 4 usually has x
as a free variable; 4 [a / x] is well-intended, but ill-formed since rb[a/x] is not
a logical formula, for a is not a term but an element of our model.

Therefore we are forced to interpret formulas relative to an enuironment.
You may think of environments in a variety of ways. Essentially, they are
look-up tables for all variables; such a table 1 associates with every variable
x a value l(x) of the model. So you can also say that environments are
functions

1 : var -+ A

from the set of variables var to the universe of values A of the underlying
model. Given such a look-up table, we can assign truth values to all formulas.
However, for some of these computations we need updated look-up tables.

Definition 2.13 Let 1 be a look-up table for a universe of concrete values A
and let a E A. We denote by l [x H a] the look-up table which maps x to a
and any other variable y to l(y).

Finally, we are able to give a semantics to formulas of predicate logic. For
propositional logic, we did this by computing a truth value. Clearly, it suffices
to know in which cases this value is T.

Definition 2.14 Given a model JY for a pair (P,9) and given an environment
1, we define the satisfaction relation

134 Predicate logic

for each logical formula q5 over the pair (F , 9) by structural induction on
4. The denotation A t=l q5 says that 4 computes to T in the model Jat with
respect to the environment 1.

P: If 4 is of the form P(tl, t2,. . . , tn), then we interpret the terms
tl, t2,. . . , tn in our set A by replacing all variables with their values
according to I . In this way we compute concrete values al, a2,. . . ,an
of A for each of these terms, where we interpret any function symbol
f E B by fA. Now A k1 P(tl, t2,. . . , t,) holds iff (al, a2,. . . ,an) is in
the set pA.

Vx: The relation A k l Vx y, holds iff A El[,,] y holds for all a E A.
3x: Dually, A k l 3x y, holds iff A k1[,,] y, holds for some a E A.
-1: The relation A k l l y holds iff it is not the case that Jat k l y holds.
v: The relation A y,1 V y,2 holds iff A t=[yl or A k1 y2 holds.
A: The relation A k1 y,l A y2 holds iff A k l y,l and A kl y2 hold.

-P: The relation A kr y,l + y,z holds iff A t=l y2 holds whenever
A E l yl holds.

We sometimes write A 4 to denote that A k l 4 does not hold.

There is a straightforward inductive argument on the height of the parse
tree of a formula which says that Jat k l 4 holds iff A Ell 4 holds, whenever
1 and 1' are two environments which are identical on the set of free variables
of 4. In particular, if 4 has no free variables at all, we then call 4 a sentence;
we conclude that A k l 4 holds, or does not hold, regardless of the choice
of 1. Thus, for sentences 4 we often write

since the choice of an environment 1 is then irrelevant.

Example 2.15 Let us illustrate the definitions above by means of another
simple example. Let B 2 {alma) and 9 {loves} where alma is a constant
and loves a predicate with two arguments. The model A we choose here
consists of the set A {a, b,c), the constant function almaM a and the
predicate

lovesA 2 {(a, a), (b, a), (c, a)),

which has two arguments as required. We want to check whether the model
A satisfies

None of Alma's lovers' lovers love her.

2.4 Semantics of predicate logic 135

First, we need to express the, morally worrying, sentence in predicate logic.
Here is such an encoding (one is often able to find other encodings which
differ slightly from the one that is closest to the linguistic and semantic
structure of the sentence):

VxVy (loves(x, alrna) A loves(y, x) -+ lloves(y, alma)).

Does the model A satisfy this formula? Well, it does not; for we may
choose a for x and b for y. Since (a, a) is in the set lovesM and (b, a) is in
the set lovesM, we would need that the latter does not hold since it is the
interpretation of loves(y, alrna); this cannot be.

And what changes if we modify A to A' , where we keep A and alma-",
but redefine the interpretation of loves as

lovesM' 2 { (b , a), (c, b))"?

Well, now there is exactly one lover of Alma's lovers, namely c; but c is not
one of Alma's lovers. Thus, the formula above holds in the model A'.

EXERCISES 2.6
* 1. Consider the formula

Obviously, Q is a predicate with three arguments and g a function
with two arguments. Find two models A and A' with respective
environments 1 and 1' such that A !=[4 but A' !#/I 4.

2. Consider the sentence

4 vx 3y 32 (P(x, y) A P(z, y) A (P (x , z) + P(z, x))).

Which of the following models satisfies +?

(a) The model A consists of the set of natural numbers with
M def P -{(m,n)(m<n) .

(b) The model A' consists of the set of natural numbers with
def

P~ = {(m, 2 * m) 1 m natural number).
(c) The model A" consists of the set of natural numbers with

N def
P~ = {(m,n) I m e n + 1).

3. Let P be a predicate with two arguments. Find a model A which
satisfies the sentence Vx lP(x,x). Find also a model A' such that
A' I# vx -lP (x, x).

136 Predicate logic

4. Consider the sentence Vx(3yP(x, y) A (3zP(z,x) -, VyP(x,y))). We
already noted that its meaning in a given model is independent of the
chosen look-up table 1. Please simulate the evaluation of this sentence
in a model of your choice, focusing on how the initial look-up table
1 grows and shrinks like a stack when you evaluate its subformulas
according to the definition of the satisfaction relation.

5. Let 9 % I d , f ,g), where d is a constant symbol, f a function symbol
with three arguments and g a function symbol with two arguments.
As model A , we choose the set of natural numbers O,1,2,. . .. Further,
dA !L!' 2, fA(k,n,m) k * n + m and gM(k,n) k + n * n. E.g.
f M(l, 2,3) equals 5 and g.A(2, 3) equals 11. Assuming a look-up table
1 with l(x) 5 and l(y) 7, compute the meaning of the terms below
in the model A!:

* (a) f (d,x,d)
(b) f k(x , 4 , Y , g(d, 4)
(c) g(f (g(4 Y), f (x, g(d, 4 , x), Y), f (Y, g(d, 494) .

6. Let 4 be the formula

where R is a predicate symbol of two arguments.

* (a) Let A {a, b, c, d} and R& {(b, c) , (b, b), (b, a)}. Do we have
dl I= 4 ? Justify your answer, whatever it is.

1 def * (b) Let A' {a, b, c) and R& = {(b, c), (a, b), (c, b)}. Do we have
A' I= 4 ? Justify your answer, whatever it is.

2.4.2 Semantic entailment

Given a model Jl for a formula 4 and an environment 1 for A', we have
learned how to check whether A' satisfies 4 with respect to 1; the affirmative
we denoted as A' I=! 4. This is strikingly different from what happened in
propositional logic. There we had a list of formulas on the left-hand side of
the sign k. We wrote $q, $2,. . . , q5,, b y to express the semantic entailment of
y, from 4,,42,.. . ,&: whenever all &, 42,. . . , & evaluate to T, the formula
y, evaluates to T as well. How can we define such a notion for formulas in
predicate logic?

Definition 2.16 Let 41, 42,. . . , cPn, y, be formulas in predicate logic. Then
41,42 ,..., 4n k Y) denotes that, whenever A' kl 4i for 1 I i < n, then
A I=/ y , for all models A! and look-up tables 1.

2.4 Semantics of predicate logic 137

The symbol I= is overloaded in predicate logic. We use it to denote satisfia-
bility :

there is some model A with A I= q5

of sentences and semantic entailment:

of formulas. Computationally, each of these notions means trouble. First,
establishing A t= 4 will cause problems, if done on a machine, as soon as the
universe of values A of &if is infinite. For example, if 4 is a sentence of the
form Vx y , then we need to verify &if k[-,] y, for infinitely many elements
a.

Second, and much more seriously, in trying to verify 4 ~ ~ , . . . ,q5, I= y,
we have to check things out for all possible models, i.e. all models which are
equipped with the right structure (i.e. they have functions and predicates
with the matching number of arguments). This task is impossible to perform
mechanically. This should be contrasted to the situation in propositional
logic, where the computation of the truth tables of the propositions involved
was the basis for computing this relationship successfully.

However, we can sometimes reason that certain semantic entailments are
valid. We do this by providing an argument that does not depend on the
actual model at hand. Of course, this works only for a very limited number
of cases. The most prominent ones are the quantiJier equivalences which we
already encountered in the section on natural deduction.

Let us look at a couple of examples of semantic entailment.

The justification of the semantic entailment

is as follows. Let &if be a model satisfying Vx(P(x) -, Q(x)). We need
to show that A' satisfies VxP(x) -+ VxQ(x) as well. On inspecting the
definition of A I= y,l 4 y , ~ , we see that we are done if not every element
of our model satisfies P. Otherwise, every element does satisfy P. But
since &if satisfies Vx (P(x) -, Q(x)), the latter fact forces every element of
our model to satisfy Q as well. By combining these two cases (i.e. either
all elements of &if satisfy P , or not) we have shown that A' satisfies
Vx P(x) -+ Vx Q(x).
What about the converse of the above? Is

Vx P (x) 4 Vx Q(x) k Vx (P (x) --+ Q(x))

138 Predicate logic

valid as well? Hardly! Suppose that A' is a model satisfying Vx P(x) -,
Vx Q(x). If A' is its underlying set and PA' and Q-g' are the corresponding
interpretations of P and Q, then A' != Vx P(x) -, Vx Q(x) simply says that,
if pA' equals A', then QA' must equal A' as well. However, if P ~ ' does not
equal A', then this implication is vacuously true (remember that F -, . = T
no matter what . actually is). In this case we do not get any additional
constraints on our model A'. After these observations, it is now easy to

def def construct a counter example. Let A' {a, b), P.." = {a) and Q~ = {b).
Then A' t= VxP(x) -, Vx Q(x) holds, but A' != Vx (P(x) -, Q(x)) does
not.

2.4.3 The semantics of equality

We have already pointed out the open-ended nature of the semantics of
predicate logic. Given a predicate logic over a set of function symbols F and
a set of predicate symbols 9, we need only a non-empty set A equipped with
concrete functions f4' (for f E 9) and concrete predicates PA (for P E 8)
in A which have the number of arguments agreed upon in our specification.
Of course, we also stressed that most models have natural interpretations of
functions and predicates, but notions like semantic entailment:

really depend on all possible models, even the ones that don't seem to make
any sense. Apparently there is no way out of this peculiarity. For example,
where would you draw the line between a model that makes sense and one
that doesn't? And would any such choice, or such a set of criteria, not be
subjective? Such constraints could also forbid a modification of your model
if this alteration were caused by a slight adjustment of the problem domain
you intended to model. You see that there are a lot of good reasons for
maintaining such a liberal stance towards the notion of models in predicate
logic.

However, there is one famous exception. Often one presents predicate logic
such that there is always a special predicate = available to denote equality
(recall Section 2.3.1); it has two arguments and

has the intended meaning that the terms tl and tz compute the same thing.
We discussed its proof rule in natural deduction already in Section 2.3.1.
Semantically, one recognises the special role of equality by imposing on an
interpretation function to be actual equality on the set A. Thus, (a, b) is

2.4 Semantics of predicate logic 139

in the set =A iff a and h are the same elements in the set A. For example,
given A {a, b, c), we are forced to interpret equality such that =" is just

Hence the semantics of equality is easy, for it is always modelled extensionally.

EXERCISES 2.7
* 1. Consider the three sentences

which express that the binary predicate P is reflexive, symmetric and
transitive, respectively. Show that none of these sentences is semanti-
cally entailed by the other ones by choosing for each pair of sentences
above a model which satisfies these two, but not the third sentence -
essentially, you are asked to find three binary relations, each satisfying
just two of these properties.

* 2. Show the semantic entailment

Vx P (x) V Vx Q(x) b Vx (P (x) V Q(x)).

3. Prove Vx+ k 4 x 4 ; for that you have to take any model which
satisfies Vx 74 and you have to reason why this model must also
satisfy 13x 4. You should do this in a similar way to the examples in
Section 2.4.2.

4. Let 4 and and q be formulas of predicate logic such that they
contain no free variables.

(a) If y is a semantically entailed by 4, is it necessarily the case
that y is not semantically entailed by 7 4 ?

* (b) If y is semantically entailed by 4 A y, is it necessarily the case
that y is semantically entailed by 4 and semantically entailed

by 1??
(c) If y is semantically entailed by 4 or by q, is it necessarily the

case that y is semantically entailed by 4 V y?
(d) Explain why y is semantically entailed by $ iff 4 -+ y is valid,

i.e. true in all models.

5. Show

2.5 Undecidability of predicate logic

We conclude our introduction to predicate logic with some negative results.
Given a formula 4 in propositional logic we can, at least in principle, de-
termine whether I= + holds: if 4 has n propositional atoms, then the truth

2.5 Undecidability of predicate logic 141

table of 4 contains 2n lines; and I= 4 holds if, and only if, the column for 4
contains only T entries.

The bad news is that such a mechanical procedure, working for all formulas
#, cannot be provided if 4 is a formula in predicate logic. We will give a
formal proof of this negative result, though we rely on an informal (yet
intuitive) notion of computability.

The problem of determining whether a predicate logic formula is valid is
known as a decision problem. A solution to a decision problem is a program
(written in Java, C, or any other common language) that takes problem
instances as input and always terminates, producing a correct 'yes' or 'no'
output. In the case of the decision problem for predicate logic, the input to
the program is an arbitrary formula q5 of predicate logic and the program is
correct if it produces 'yes' if the formula is valid and 'no' if it is not. Note
that the program which solves a decision problem must terminate for all
well-formed input: a program which goes on thinking about it for ever is
not allowed.

The decision problem at hand is this:

Validity in predicate logic. Given a logical formula in predicate logic, does
k q5 hold, yes or no ?

We now show that this problem is not solvable; we cannot write a correct
C or Java program that works for all 4. It is important to be clear about
exactly what we are stating. Naturally, there are some 4 which can easily be
seen to be valid; and others which can easily be seen to be invalid. However,
there are also some q5 for which it is not easy. Every 4 can, in principle, be
discovered to be valid or not, if you are prepared to work arbitrarily hard
at it; but there is no uniform mechanical procedure for determining whether
is valid which will work for all 4.

We prove this by a well-known technique called problem reduction. That
is, we take some other problem, of which we already know that it is not
solvable, and we then show that the solvability of our problem entails the
solvability of the other one. This is a beautiful application of the proof rule
RAA, since we can then infer that our own problem cannot be solvable as
well.

The problem that is known not to be solvable is interesting in its own right
and, upon first reflection, does not seem to have a lot to do with predicate
logic; it is the Post correspondence problem:

142 Predicate logic

The Post correspondence problem. Given a Jinite sequence of pairs (sly tl),
(s2, t2), . . . , (sky tk) such that all si and ti are binary strings of positive length, is
there a sequence of indices il, i2,. . . , in with n 2 1 such that the concatenation
of strings Si, Si2 . . . Sin equal^ ti, ti2 . . . ti, ?

Here is an instance of the problem which we can solve successfully: the
concrete correspondence problem instance C is given by a sequence of three
pairs

c ((1, lOl), (10, OO), (01 1, 11))
def def def so sl = 1, s2 = 10 and s3 = 011, whereas t l 2 101, t2 00 and t3 11.

A solution to the problem is the sequence of indices (1,3,2,3) since ~ 1 ~ 3 ~ 2 ~ 3

and tlt3t2t3 both equal 101110011. Maybe you think that this problem must
surely be solvable; but remember that a computational solution would have
to be a program that solves all such problem instances. Things get a bit
tougher already if we look at this (solvable) problem:

def def def def
Sl = 001 S2 = 01 S3 = 01 Sq = 10

def def def
t, = 0 t2 = 011 t3 = 101 t', a m 1 .

You are invited to solve this by hand, or by writing a program for this
specific instance.

Note that the same number can occur in the sequence of indices, as
happened in the first example in which 3 occurs twice. This means that the
search space we are dealing with is infinite, which should give us a strong
intuition that the problem is unsolvable. We do not formally prove it in this
book.

The proof of the following theorem is due to the mathematician A. Church.

Theorem 2.17 The decision problem of validity in predicate logic is undecid-
able: there is no procedure which, given any 4, decides whether I= 4 holds.

PROOF: AS said before, we pretend that validity is decidable for predicate
logic and thereby solve the (insoluble) Post correspondence problem. Given
a correspondence problem instance C :

we need to be able to construct, within finite space and time, some formula
4 of predicate logic such that b 4 holds iff the correspondence problem

2.5 Undecidability of predicate logic 143

instance C above has a solution. As function symbols, we choose a constant
e and two function symbols f o and f l each of which requires one argument.
We think of e as the empty string, or word, and f o and f 1 symbolically stand
for concatenation with 0, respectively 1. So if b l b 2 . . . bl is a binary string of
bits, we can code that up as the term

Note that this coding spells that word backwards. To facilitate reading those
formulas, we abbreviate terms like f b, (fb,- l . . . (f (f bl (t))) . . .) by f bl b2...bl (t) .

We also require a predicate symbol P which expects two arguments.
The intended meaning of P (s , t) is that there is some sequence of indices
(il, i2,. . . , im) such that s is the term representing si, si2 . . . si, and t represents
ti,ti,. . . ti,. Thus, s constructs a string using the same sequence of indices as
does t ; only s uses the si whereas t uses the t i .

Our sentence 4 has the coarse structure

where we set

def
$9 = 32 P (z , z) .

Our claim is that formula 4 holds in all models iff the Post correspondence
problem C has a solution.

First, let us assume that k 4. Our strategy is to find a model for 4
which tells us there is a solution to the correspondence problem C simply by
inspecting what it means for 4 to satisfy that particular model. The universe
of concrete values A of that model is the set of all finite, binary strings
(including the empty one). The interpretation ed of the constant e is just
that empty word. The interpretation of f o is the unary function f f which
appends a 0 to a given word:

f f (s) so;

similarly,
def f f (s) = sl

144 Predicate logic

appends a 1 to a given word. The interpretation of P on A' is just what we
expect it to be:

P" $2 {(s, t) I there is a sequence of indices (il, i2,. . . , i,) such that
s equals sj, si2 . . . si, and t equals til ti2 . . . ti,),

where s and t are binary strings and the si and ti are the data of the
correspondence problem C. Thus, a pair of words (s, t) lies in PA if, using
the same sequence of indices (il, i2,. . . , i,), s is built using the corresponding
si and t is built using the respective ti.

We now show that the fact that 4 holds in the model A implies that
C is solvable. First, note that A satisfies $1 and 4 2 . For example, 4 2 says
about 4 that, if the pair (s,t) is in P ~ , then the pair (ssi, t ti) is also
in P" for i = 1,2,. . . ,k (you can verify this by inspecting the definition
of P"'). Now (s, t) E Pdg implies that there is some sequence (il, iz,. . . , i,)
such that s equals si, si2 . . . si, and t equals ti, ti2 . . . ti,. We simply choose the
new sequence (il, i2,. . . , i,, i) and observe that s si equals si1si2 . . . si,si and t ti
equals til ti2 . . . ti, ti. (Why does A i= hold?)

Since A I= A 42 --+ 4 3 and A i= A 4 2 , it follows that A k 43. By
definition of 4 3 and PA, this tells us there is a solution to C.

Conversely, let us assume that the Post correspondence problem C has
some solution, namely the sequence of indices (il, i2,. . . , in). Now we have to
show that, if A" is any model having a constant el1, two unary functions, ffl and fiA1, and a binary predicate pA1, then that model has to satisfy 4.
Notice that the root of the parse tree of 4 is an implication, so this is the
crucial clause for the definition of 4' i= 4. By that very definition, we are
already done if A'' or if A' 42. The harder part is therefore the one
where A'' l= $1 r\ 42 , for in that case we need to verify A' l= 43 as well. The
way we proceed here is by interpreting finite, binary strings in the domain
of values A' of the model A'. This is not unlike the coding of an interpreter
for one programming language in another. The interpretation is done by a
function interpret which is defined inductively on the data structure of finite,
binary strings (we write E for the empty word):

Note that interpret(s) is defined inductively on the length of s. This inter-
pretation is, like the coding above, backwards; for example, the binary word

2.5 Undecidability of predicate logic

01001 10 gets interpreted as

Note that

is just the meaning of f,(e) in A', where s bl b2.. . hl. Using that and the
fact that A' k $1, we conclude that (interpret(si), interpret(ti)) E pd l for
i = 1,2,. . .,k. Similarly, since 4' I= &, we know that for all (s,t) E psAL1
we have that (interpret(ssi), interpret(tti)) E p M 1 for i = 1,2,. . . , k. Using
these two facts, starting with (s,t) = (si1,til), we repeatedly use the latter
observation to obtain

Since si,Si2 . . . Sin and ti, ti, . . . ti,, together form a solution of C, they are equal;
and therefore the elements interpret(si,si2 . . . sin) and interpret(til ti2 . . . tin) are
the same in A', for interpreting the same thing gets you the same result.
Hence the pair

(interpret(si,si2 . . .sin), interpret(ti,ti, . . . ti,,)) E pA1

verifies 32 P (z , z) in A" and thus A' k 43.

There are two more negative results which we now get quite easily. Let
us say that a formula 4 is satisJ?able if there is some model A such that
A! t= 4. This property is not to be taken for granted; the formula

is clearly unsatisfiable. More interesting is the observation that 6 is unsatisfi-
able if, and only if, 14 is valid, i.e. holds in all models. This is an immediate
consequence of the definitional clause 4 k 14 for negation. Since we can't
compute validity, it follows that we cannot compute satisfiability either.

The other undecidability result comes from the soundness and complete-
ness of predicate logic:

which we do not prove in this text. Since we can't decide validity, we cannot
decide provability either, on the basis of (2.2). One might reflect on that
last negative result a bit. It means bad news if one wants to implement

146 Predicate logic

perfect theorem provers which can mechanically produce a proof of a given
formula, or refute it. It means good news, though, if we like the thought that
machines still need a little bit of human help. Creativity seems to have limits
if we leave it to machines alone.

EXERCISES 2.8
1. Assuming that our proof calculus for predicate logic is sound (see

exercise 2), show that the following sequents cannot be proved by
finding for each sequent a model such that all formulas to the
left of k evaluate to T and the sole formula to the right of !-
evaluates to F (explain why this guarantees the non-existence of a
proof) :

2. To show the soundness of our natural deduction rules for predicate
logic, it intuitively suffices to show that the conclusion of a proof
rule is true provided that all its premises are true. What additional
complication arises due to the presence of variables and quantifiers?
Can you precisely formalise the necessary induction hypothesis for
proving soundness?

* 3. Assuming that our proof calculus for predicate logic is sound (see
exercise 2), show that the following two sequents cannot be proved
in predicate logic. Relying on the soundness of our proof calculus, it
suffices to do the following: for each sequent you need to specify a
model such that the formula on the left of I- holds whereas the one
to the right of k doesn't.

2.6 Bibliographic notes

Many design decisions have been taken in the development of predicate logic
in the form known today. The Greeks and the medievals had systems in which
many of the examples and exercises in this book could be represented, but

2.6 Bibliographic notes 147

nothing that we would recognise as predicate logic emerged until the work of
Gottlob Frege in 1879, printed in [Fre03]. An account of the contributions
of the many other people involved in the development of logic can be found
in the first few pages of W. Hodges' chapter in [Hod83].

There are many books covering classical logic and its use in computer
science; we give a few incomplete pointers to the literature. The books
[SA91], [vD89] and [Gal871 cover more theoretical applications than those in
this book, including type theory, logic programming, algebraic specification
and term-rewriting systems. An approach focusing on automatic theorem
proving is taken by [Fit96]. Books which study the mathematical aspects of
predicate logic in greater detail, such as completeness of the proof systems
and incompleteness of first-order arithmetic, include [Ham781 and [Hod83].

Most of these books present other proof systems besides natural deduction
such as axiomatic systems and tableau systems. Although natural deduction
has the advantages of elegance and simplicity over axiomatic methods, there
are few expositions of it in logic books aimed at a computer science audience.
One exception to this is the book [BEKV94], which is the first one to present
the rules for quantifiers in the form we used here. A natural deduction
theorem prover called Jape has been developed, in which one can vary the
set of available rules and specify new ones1.

A standard reference for computability theory is [BJSO]. A proof for the
undecidability of the Post correspondence problem can be found in the text
book [Tay98].

The second instance of a Post correspondence problem is taken from
[Sch92]. A text on the fundamentals of databases systems is [EN94].

www. comlab. ox. ac . uk/oucl/users/bernard. suf r i d jape. shtml

