
Predicate logic 

2.1 The need for a richer language 

In the first chapter, we developed propositional logic by examining it from 
three different angles: its proof theory (the natural deduction calculus), 
its syntax (the tree-like nature of formulas) and its semantics (what these 
formulas actually mean). From the outset, this enterprise was guided by the 
study of declarative sentences, statements about the world which can, in 
principle, be given a truth value. 

We begin this second chapter by pointing out the limitations of proposi- 
tional logic with respect to encoding purely declarative sentences. Proposi- 
tional logic dealt quite satisfactorily with sentence components like not, and, 
or and i f . .  . then, but the logical aspects of natural and artificial languages 
are much richer than that. What can we do with modifiers like there exists 
. . . , all . . . , among . . . and only . . . ? Here, propositional logic shows clear 
limitations and the desire to express more subtle declarative sentences led to 
the design of predicate logic, which is also called first-order logic. 

Let us consider the declarative sentence 

Every student is younger than some instructor. 

In propositional logic, we could identify this assertion with a propositional 
atom p. However, that is a rather crude way of reflecting the finer logical 
structure of this sentence. What is this statement about? Well, it is about 
being a student, being an instructor and being younger than somebody else. 
These are all properties of some sort, so we would like to have a mechanism 
for expressing them together with their logical relationships and dependences. 
We now use predicates for that purpose. For example, we could write 
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to denote that Andy is a student and 

to say that Paul is an instructor. Likewise, 

Y (andy, pad)  

could mean that Andy is younger than Paul. The symbols S ,  I and Y are 
called predicates. Of course, we have to be clear about their meaning. The 
predicate Y could also mean that the second person is younger than the first 
one, so we need to specify exactly what these symbols refer to. 

Having such predicates at our disposal, we still need to formalise those 
parts of the sentence above which speak of every and some. Obviously, this 
sentence refers to the individuals that make up some academic community 
(left implicit by the sentence), like Kansas State University or the University 
of Birmingham, and it says that for each student among them there is an 
instructor among them such that the student is younger than the instructor. 

These predicates are not yet enough to allow us to express the sentence 
'Every student is younger than some instructor'. We don't really want to 
write down all instances of S(.) where . is replaced by every student's name 
in turn. Similarly, when trying to codify a sentence having to do with the 
execution of a program, it would be rather laborious to have to write down 
every state of the computer. Therefore, we employ the concept of a variable. 
Variables are written 

and can be thought of as place holders for concrete values (like a student, or 
a program state). Using variables, we can now specify the meanings of S, I 
and Y more formally: 

S(x) : x is a student 

I (x)  : x is an instructor 

Y(x,Y) : x is younger than y. 

Note that the names of the variables are not important, provided that we 
use them consistently. We can state the intended meaning of I by writing 

I(y) : y is an instructor 

or, equivalently, by writing 

I(x)  : x is an instructor. 
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Variables are mere place holders for objects. The availability of variables is 
still not sufficient for capturing the essence of the example sentence above. 
We need to convey the meaning of 

Every student x is younger than some instructor y. 

This is where we need to introduce quantijiers 

V (read: 'for all') 

3 (read : 'there exists') 

which always come attached to a variable, as in Vx ('for all x') or in 32 
('there exists z', or 'there is some 2'). Now we can write the example sentence 
in an entirely symbolic way as 

Actually, this encoding is rather a paraphrase of the original sentence. In 
our example, the re-translation results in 

For every x ,  i f x  is a student, then there is some y which is an instructor such that x 
is younger than y .  

Different predicates can have a different number of arguments. The pred- 
icates S and I have just one (they are called unary predicates), but predicate 
Y requires two arguments (it is called a binary predicate). Predicates with 
any finite number of arguments are possible in predicate logic. 

Another example is the sentence 

Not all birds can fly. 

For that we choose the predicates B and F which have one argument 
expressing 

B(x) : x is a bird 

F(x) : x can fly. 

The sentence 'Not all birds can fly' can now be coded as 

saying: 'It is not the case that all things which are birds can fly.'. Alternatively, 
we could code this as 

meaning: 'There is some x which is a bird and cannot fly.'. Note that the 
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first version is closer to the linguistic structure of the sentence above. These 
two formulas should evaluate to T in the world we currently live in since, for 
example, penguins are birds which cannot fly. Shortly, we address how such 
formulas can be given their meaning in general. We will also explain why 
formulas like the two above are indeed equivalent semantically. 

Coding up complex facts expressed in English sentences as logical formulas 
in predicate logic is important and much more care must be taken than 
in the case of propositional logic. However, once this translation has been 
accomplished the main objective is to reason symbolically (I-) or semantically 
(t=) about the information expressed in those formulas. 

In Section 2.4, we develop the proper notion of models, real or artificial 
worlds in which these assertions can be true or false, which allows us to 
define semantic entailment 

The latter expresses that, given any such model in which all &, 42,. . . ,q5, 
hold, it is the case that y holds in that model as well. In that case, one 
also says that y is semantically entailed by #q, #z,. . . ,$,. Although this 
definition of semantic entailment closely matches the one for propositional 
logic in Definition 1.33, the process of evaluating a predicate formula is quite 
different from the computation of truth values for propositional logic. We 
discuss it in detail in Section 2.4. 

In Section 2.3, we extend our natural deduction calculus so that it covers 
logical formulas of predicate logic as well. In this way we are able to prove 
sequents 

in a similar way to that in the first chapter. It is outside the scope of this 
book to show that the natural deduction calculus for predicate logic is sound 
and complete with respect to semantic entailment; but it is indeed the case 
that 

for formulas of the predicate calculus. The first proof of this was done by 
the mathematician K. Godel. 

What kind of reasoning must predicate logic be able to support? To get a 
feel for that, let us consider the following argument: 

No books are gaseous. Dictionaries are books. Therefore, no dictionary is gaseous. 
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The predicates we choose are 

B(x) : x is a book 

G(x) : x is gaseous 

D(x) : x is a dictionary. 

Evidently, we need to build a proof theory and semantics that allow us to 
derive 

as well as 

Verify that this sequent expresses the argument above in a symbolic form. 

Predicate symbols and variables allow us to code up much more of the 
logical structure of declarative sentences than was possible in propositional 
logic. Predicate logic contains one more concept, that of function symbols, 
that allows us to go even further. Consider the declarative sentence 

Every child is younger than i ts  mother. 

We could code it using predicates as 

where C(x) means that x is a child, M(x,y) means that x is y's mother 
and Y(x,y) means that x is younger than y. (Note that we actually used 
M(y, x) (y is x's mother), not M(x, y).) As we have coded it, the sentence 
says that, for all children x and any mother of theirs y, x is younger than y. 
It is not very elegant to say 'any of x's mothers', since we know that every 
individual has one and only one mother1. The inelegance of coding 'mother' 
as a predicate is even more apparent if we consider the sentence 

Andy and Paul have the same maternal grandmother. 

which in predicate logic, using a and p for Andy and Paul and M for mother 
as before, becomes 

Vx Vy Vu Vv (M(x, y) A M(y, a) A M(u, v )  A M(v, p) --+ x = u). 

This formula says that, if y and v are Andy's and Paul's mothers, respectively, 
and x and u are their mothers (i.e. Andy's and Paul's maternal grandmothers, 
respectively), then x and u are the same person. Notice that we used a special 

We assume here that we are talking about genetic mothers, not adopted mothers, step mothers etc. 
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predicate in predicate logic, equality ; it is a binary predicate, i.e. it takes two 
arguments, and is written =. Unlike other predicates, it is usually written 
in between its arguments rather than before them; that is, we write x = y 
instead of = (x, y )  to say that x and y are equal. 

The function symbols of predicate logic give us a way of avoiding this 
ugly encoding, for they allow us to represent y's mother in a more direct 
way. Instead of writing M(x, y) to mean that x is y's mother, we simply 
write m(y) to mean y's mother. The symbol m is a function symbol: it takes 
one argument and returns the mother of that argument. Using m, the two 
sentences above have simpler encodings than they had using M: 

now expresses that every child is younger than its mother. Note that we need 
only one variable rather than two. Representing that Andy and Paul have 
the same maternal grandmother is even simpler; it is written 

quite directly saying that Andy's maternal grandmother is the same person 
as Paul's maternal grandmother. 

One can always do without function symbols, by using a predicate symbol 
instead. However, it is usually neater to use function symbols whenever pos- 
sible, because we get more compact encodings. However, function symbols 
can be used only in situations in which we want to denote a single object. We 
rely on the fact that every individual has a uniquely defined mother, so that 
we can talk about x's mother without risking any ambiguity (for example, 
if x had no mother, or two mothers). For this reason, we cannot have a 
function symbol b( . )  for 'brother'. It might not make sense to talk about 
x's brother, for x might not have any brothers, or he might have several. 
'Brother' must be coded as a binary predicate. 

To exemplify this point further, if Mary has several brothers, then the 
claim that 'Ann likes Mary's brother' is ambiguous. It might be that Ann 
likes one of Mary's brothers, which we would write as 

(where B and L mean 'is brother of' and 'likes', and a and m mean Ann 
and Mary) - this sentence says that there exists an x which is a brother of 
Mary and is liked by Ann. Alternatively, if Ann likes all of Mary's brothers, 
we write it as 

saying that any x which is a brother of Mary is liked by Ann. 
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Different function symbols may take different numbers of arguments. In a 
domain involving students and the grades they get in different courses, one 
might have the binary function symbol g(., -) taking two arguments: g(x, y) 
refers to the grade obtained by student x in course y. 

2.2 Predicate logic as a formal language 

The discussion of the preceding section was intended to give an impression 
of how we code up sentences as formulas of predicate logic. In this section, 
we will be more precise about it, giving syntactic rules for the formation 
of predicate logic formulas. Because of the power of predicate logic, the 
language is much more complex than that of propositional logic. 

The first thing to note is that there are two sorts of things involved in 
a predicate logic formula. The first sort denotes the objects that we are 
talking about: individuals such as a and p (referring to Andy and Paul) are 
examples, as are variables such as x and v .  Function symbols also allow us 
to refer to objects: thus, m(a) and g(x, y )  are also objects. Expressions in 
predicate logic which denote objects are called terms. 

The other sort of things in predicate logic denotes truth values; expressions 
of this kind are formulas. Y (x, m(x)) is a formula, though x and m(x) are 
terms. 

A predicate vocabulary consists of three sets: a set of predicate symbols 
9, a set of function symbols 9 and a set of constant symbols W. Each 
predicate symbol and each function symbol comes with an arity, the number 
of arguments it expects. 

2.2.1 Terms 

The terms of our language are made up of variables, constant symbols 
and functions applied to those. Functions may be nested, as in m(m(x)) or 
g(m(a), c ) :  the grade obtained by Andy's mother in the course c. 

Definition 2.1 Terms are defined as follows. 

Any variable is a term. 
0 Any constant in %? is a term. 

If t l ,  t2,. . . , t, are terms and f E .F has arity n, then f ( t l ,  t2,. . . , t,) is a 
term. 
Nothing else is a term. 
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In Backus Naur form we may write 

where x is a variable, c E V and f E 9 has arity n. 

It is important to note that 

rn The first building blocks of terms are constants and variables. 
More complex terms are built from function symbols using as many 
previously built terms as arguments as the function symbol in question 
requires. 

rn The notion of terms is dependent on the sets V and F. If you change 
those, you change the set of terms. 

We said that a predicate vocabulary is given by three sets, 9, F and 
%?. In fact, constants can be thought of as functions which don't take any 
arguments (and we even drop the argument brackets) - therefore, constants 
live in the set 9 together with the 'true' functions which do take arguments. 
From now on, we will drop the set %, since it is convenient to do so, and 
stipulate that constants are 0-arity functions. 

See Figure 2.1 for the parse tree of the term (2 - (s(x) + y)) * x, where +, 
- and * are written in infix. 

EXERCISES 2.1 
1. Let 9 be {d, f,g), where d is a constant, f a function symbol with 

two arguments and g a function symbol with three arguments. Which 
of the following strings are terms over F? Draw the parse tree of 
those strings which are indeed terms. 

2. Let F be as in the last exercise. 

(a) The length of a term over 9 is the length of its string rep- 
resentation, where we count all commas and parentheses. For 
example, the length of f (x,g(y,z), z) is 13. Can you list all 
terms over 9 which do not contain any variables and whose 
length is less than lo? 



Predicate logic 

Fig. 2.1. A parse tree representing an arithmetic term. 

* (b) The height of a term over F is defined as 1 plus the length of 
the longest path in its parse tree, as in Definition 1.31. List all 
terms over F which do not contain any variables and whose 
height is less than 4. 

3. Let 9 be the set {+, -, *, s) where +, -, * are binary functions and 
s is a unary function. Let V be the set {0,1,2,. . .). We write +, -, * 
in infix notation rather than prefix notation (that is, we write x + y 
instead of +(x,y), etc.). Figure 2.1 shows the parse tree of the term 
(2 - (s(x) + y)) * x. Draw the parse tree of the term (2 - s(x)) + (y * x). 
Compare your solution with the parse tree in Figure 2.1. 

2.2.2 Formulas 

Suppose that our predicate vocabulary is given by the sets of function 
symbols 9 and predicate symbols 9. The choice of predicate, function and 
constant symbols is driven by what we intend to describe. For example, if we 
work on a database representing relations between our kin we might want 
to consider 

referring to being male, being female, being a son of . .  . and being a daughter 
o f . .  . . Naturally, F and M are unary predicates (they take one argument) 
whereas D and S are binary (taking two). 
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We already know what the terms over 9 are. Given that knowledge, we 
can now proceed to define the formulas of predicate logic. 

Definition 2.2 We define the set of formulas over (F,P) inductively, using 
the already defined set of terms over 9: 

0 If P is a predicate taking n arguments, n 2 1, and if tl, t2,. . . , t, are terms 
over 9, then P(t l ,  t2,. . . , t,) is a formula. 
If 4 is a formula, then so is (14). 
If 4 and y are formulas, then so are (4  A y) ,  (4 V y) and (4 -, y). 

0 If 4 is a formula and x is a variable, then (Vx 4) and (3x 4) are formulas. 
Nothing else is a formula. 

Note how the arguments given to predicates are always terms. Let us 
stress again that the notion of 'formula' depends on the particular choice of 
constant, function and predicate symbols. We can condense this definition 
using Backus Naur form (BNF): 

where P is a predicate of arity n, ti are terms and x is a variable. Recall 
that each occurrence of 4 on the right-hand side of the ::= stands for any 
formula. 

Convention 2.3 For convenience, we retain the usual binding priorities agreed 
upon in Convention 1.3 and add that Vy and 3y bind like 1. Thus, the order 
is : 

1, Vy and 3y bind most tightly; 
0 then v and A; 

then +. 

We also often omit brackets around quantifiers, provided that doing so 
introduces no ambiguities. 

Predicate logic formulas can be represented by parse trees. For example, 
Figure 2.2 represents the formula Vx ((P(x) + Q(x)) A S(x, y)). 

Example 2.4 Consider translating the sentence 

Every son of my father is my brother. 
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into predicate logic. We use a constant m to represent 'me' (or '1'). This 
example illustrates that coding facts about real life in predicate logic can 
be done in a variety of ways. As before, the design choice is whether we 
represent 'father' as a predicate or as a function symbol. 

1. As a predicate. We choose a constant m for 'me', so m is a term, and 
we choose further {S, F, B) as the set of predicates with meanings 

S(X,Y) : x is a son of y 

F(x, Y )  : x is the father of y  

B ( ~ , Y )  : x is a brother of y. 

Then the symbolic encoding of the sentence above is 

saying: 'For all x and all y, if x is a father of m and if y is a son of 
x, then y is a brother of m.'. 

2. As a function. We keep m, S and B as above and write f for the 
function which, given an argument, returns the corresponding father. 
Note that this works only because fathers are unique, so f really is a 
function as opposed to a mere relation. 

The symbolic encoding of the sentence above is now 

meaning: 'For all x, if x is a son of the father of m, then x is a brother 
of m.'. This statement is much less complex insofar as it involves only 
one quantifier. 

EXERCISES 2.2 
* 1. Let m be a constant, f a function symbol with one argument and S 

and B two predicate symbols, each with two arguments. Which of the 
following strings are formulas in predicate logic? Specify a reason for 
failure for strings which aren't. 
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* 2. Use the predicates 

A(x, y) : x admires y 
B(x, y) : x attended y 

P(x) : x is a professor 
S(x) : x is a student 
L(x) : x is a lecture 

and the function symbol (= constant) 

m :  Mary 

to translate the following into predicate logic: 

(a) Mary admires every professor. 
(The answer is not Vx A(m, P(x)); see exercise 1.) 

(b) Some professor admires Mary. 
(c )  Mary admires herself. 
(d) No student attended every lecture. 
(e) No lecture was attended by every student. 
(f) No lecture was attended by any student. 

3. Let c and d be constants, f a function symbol with one argument, g 
a function symbol with two arguments and h a function symbol with 
three arguments. Further, P and Q are predicate symbols with three 
arguments. Which of the following strings are formulas in predicate 
logic? Specify a reason for failure for strings which aren't. Draw parse 
trees of all strings which are formulas of predicate logic. 

B(x, y) : x beats y 
F(x) : x is an (American) football team 

Q(x, y) : x is quarterback of y 
L(x, y) : x loses to y 

and the constant symbols 

c : Wildcats 
j : Jayhawks 
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to translate the following into predicate logic. 

(a) Every football team has a quarterback. 
(b) If the Jayhawks beat the Wildcats, then the Jayhawks do not 

lose to every football team. 
(c) The Wildcats beat some team, which beat the Jayhawks. 

* 5. Find appropriate predicates and their specification to translate the 
following into predicate logic: 

(a) All red things are in the box. 
(b) Only red things are in the box. 
(c) No animal is both a cat and a dog. 
(d) Every prize was won by a boy. 
(e) A boy won every prize. 

6. Let F ( x ,  y) mean that x is the father of y; M(x,y) denotes x is 
the mother of y. Similarly, H(x, y), S(x, y), and B(x,y) say that x 
is the husband/sister/brother of y, respectively. You may also use 
constants to denote individuals, like 'Ed' and 'Patsy'. However, you 
are not allowed to use any predicate symbols other than the above to 
translate the following sentences into predicate logic: 

(a) Everybody has a mother. 
(b) Everybody has a father and a mother. 
(c) Whoever has a mother has a father. 
(d) Ed is a grandfather. 
(e) All fathers are parents. 
(f) All husbands are spouses. 
(g) No uncle is an aunt. 
(h) All brothers are siblings. 
(i) Nobody's grandmother is anybody's father. 
(j) Ed and Patsy are husband and wife. 
(k) Carl is Monique's brother-in-law. 

7. Formalise the following sentences in predicate logic, defining predicate 
symbols as appropriate : 

(a) Everybody who visits New Orleans falls in love with it. 
(b) There is a trumpet player who lives in New Orleans, but who 

does not like crawfish ktouffie. 
(c) There are at least two saxophone players who were born in 

New Orleans and who play better than every sax player in 
New York city. 
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(d) At least two piano players from Louisiana other than Ellis 
Marsalis play every week at my favourite club. 

(e) If the Superdome is as least as high as the Royal Albert 
Hall, then every concert hall which is as least as high as the 
Superdome is as least as high as the Royal Albert Hall. 

(f) If you eat a po-boy sandwich which has no chicken, no beef, 
and no seafood in it, then you are eating alligator nuggets. 

(g) Abita Amber is the best beer which is brewed in Louisiana. 
(h) Mardi Gras is the biggest party in the world. 
(i) Not everybody in Louisiana speaks French, but everybody in 

Louisiana knows someone from Louisiana who does speak 
French. 

(j) Commander's Palace is not only the best restaurant in New 
Orleans, but also the best one in the United States of America; 
however, there are restaurants in France which are even better. 

(k) There is only one restaurant where you can get better breakfast 
than at the Bluebird Cafe. 

(1) If you eat red beans and rice for lunch, then it must be a 
Monday. 

(m) Vaughn's is the coolest bar with the best live jazz in New 
Orleans. 

(n) Everybody who talks about the Crescent City actually refers 
to New Orleans. 

(0) Politics in New Orleans is as least as corrupt as that of all 
Caribbean islands. 

(p) Not every hurricane in New Orleans is a storm; some of them 
are cocktails, but all of them are dangerous. 

2.2.3 Free and bound variables 

The introduction of variables and quantifiers allows us to express the notions 
of all . . . and some . . . Intuitively, to verify that Vx Q(x) is true amounts to 
replacing x by any of its possible values and checking that Q holds for each 
one of them. There are two important and different senses in which such 
formulas can be 'true'. First, if we fix a certain meaning of all predicate and 
function symbols involved, then we can check whether a formula is true for 
this particular scenario. For example, if a formula encodes the specifications 
of a hardware circuit, then we would want to know whether it is true for the 
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model of the circuit. Second, one sometimes would like to ensure that certain 
formulas are true for all models. Consider (Vx P(x)) -t (3x P(x)); clearly, this 
formula should be true no matter what model we are looking at. It is this 
second kind of truth which is the primary focus of this chapter. 

Unfortunately, things are more complicated if we want to define formally 
what it means for a formula to be true in a given model. Ideally, we seek a 
definition that we could use to write a computer program verifying that a 
formula holds in a given situation. 

To begin with, we need to understand that variables occur in different 
ways. Consider the formula 

We draw its parse tree in the same way as for propositional formulas, but 
with two additional sorts of nodes: 

The quantifiers Vx and 3y form nodes and have, like negation, just one 
subtree. 

0 Predicates, which are generally of the form P(tl ,  t2, . . . , t,), have the symbol 
P as a node, but now P has n many subtrees, namely the parse trees of 
the terms tl, t2,. . . , t,. 

So in our particular case above we arrive at the parse tree in Figure 2.2. You 
can see that variables occur at two different sorts of places. First, they appear 
next to quantifiers V and 3 in nodes like Vx and 32; such nodes always have 
one subtree, subsuming their scope to which the respective quantifier applies. 

The other sort of occurrence of variables is leaf nodes containing variables. 
If variables are leaf nodes, then they stand for values that still have to be 
made concrete. There are two principal such occurrences: 

1. In our example in Figure 2.2, we have three leaf nodes x. If we walk 
up the tree beginning at any one of these x leaves, we run into the 
quantifier Vx. This means that those occurrences of x are actually 
bound to Vx so they represent, or stand for, any possible value of x. 

2. In walking upwards, the only quantifier that the leaf node y runs into 
is Vx but that x has nothing to do with y;  x and y are different place 
holders. So y is free in this formula. This means that its value has to 
be specified by some additional information, for example, a location 
in memory. 

Definition 2.5 Let 4 be a formula in predicate logic. An occurrence of x 
in 4 is free in 4 if it is a leaf node in the parse tree of 4 such that there 
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m 

Fig. 2.2. A parse tree of a predicate logic formula. 

is no path upwards from that node x to a node Vx or 3x. Otherwise, that 
occurrence of x is called bound. For Vx 4, or 3x 4, we say that 6 - minus 
any of its subformulas 3x y ,  or Vx y - is the scope of Vx, respectively 3x. 

Thus, if x occurs in 4, then it is bound if, and only if, it is in the scope of 3x 
or Vx; otherwise it is free. In terms of parse trees, the scope of a quantifier 
is just its subtree, minus any subtrees which re-introduce a quantifier for 
x; e.g. the scope of Vx in Vx(P(x) -+ 3xQ(x)) is P(x). It is quite possible, 
and common, that a variable is bound and free in a formula. Consider the 
formula 

and its parse tree in Figure 2.3. The two x leaves in the subtree of Vx are 
bound since they are in the scope of Vx, but the leaf x in the right subtree 
of -+ is free since it is not in the scope of any quantifier Vx or 3x. Note, 
however, that a single leaf either is under the scope of a quantifier, or it isn't. 
Hence individual occurrences of variables are either free or bound, never 
both at the same time. 

2.2.4 Substitution 

Variables are place holders so we must have some means of replacing them 
with more concrete information. On the syntactic side, we often need to 
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bound bound free 

Fig. 2.3. A parse tree of a predicate logic formula illustrating free and bound 
occurrences of variables. 

replace a leaf node x by the parse tree of an entire term t. Recall from the 
definition of formulas that any replacement of x may only be a term; it could 
not be a predicate, or a more complex formula, for x serves as an argument 
to a predicate one step higher up in the parse tree (see Definition 2.1 and 
the grammar in (2.1)). In substituting t for x we have to leave untouched the 
bound leaves x since they are in the scope of some 3x or Vx, i.e. they stand 
for some unspeciJied or all values respectively. 

Definition 2.6 Given a variable x, a term t and a formula 4 we define +[t/x] 
to be the formula obtained by replacing each free occurrence of variable x 
in 4 with t .  

Substitutions are easily understood by looking at some examples. Let f be a 
function symbol with two arguments and q5 the formula with the parse tree 
in Figure 2.2. Then f (x,y) is a term and c$Lf(x,y)/x] is just 4 again. This 
is true because all occurrences of x are bound in 4, so none of them gets 
substituted. 

Now consider q5 to be the formula with the parse tree in Figure 2.3. Here 
we have one free occurrence of x in 4, so we substitute the parse tree of 
f (x, y) for that free leaf node x and obtain the parse tree in Figure 2.4. Note 
that the bound x leaves are unaffected by this operation. You can see that 
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Fig. 2.4. A parse tree of a formula resulting from substitution. 

the process of substitution is straightforward, but requires that it be applied 
only to the free occurrences of the variable to be substituted. 

A word on notation: in writing 4[t/x], we really mean this to be the 
formula obtained by performing the operation [tlx] on 4. Strictly speaking, 
the chain of symbols 4[t/x] is not a logical formula, but its result will be a 
formula, provided that 4 was one in the first place. 

Unfortunately, substitutions can give rise to undesired side effects. In 
performing a substitution 4[t/x], the term t may contain a variable y, where 
free occurrences of x in 4 are under the scope of 3y or Vy in #. By carrying 
out this substitution 4[t/x], the value y, which might have been fixed by a 
concrete context, gets caught in the scope of 3y or Vy. This binding capture 
overrides the context specification of the concrete value of y, for it will 
now stand for 'some unspecified' or 'all ', respectively. Such undesired variable 
captures are to be avoided at all costs. 

Definition 2.7 Given a term t, a variable x and a formula 4, we say that t is 
free for x in 4 if no free x leaf in 4 occurs in the scope of Vy or 3y for any 
variable y occurring in t. 

This definition is maybe hard to swallow. Let us think of it in terms of parse 
trees. Given the parse tree of 4 and the parse tree of t, we can perform the 



108 Predicate logic 

substitution [tlx] on 4 to obtain the formula 4[t/x]. The latter has a parse 
tree where all free x leaves of the parse tree of 4 are replaced by the parse 
tree of t. What 't is free for x in 4' means is that the variable leaves of the 
parse tree of t won't become bound if placed into the bigger parse tree of 
4[t/x]. For example, if we consider x, t and 4 in Figure 2.4, then t is free in 
x for 4 since the new leaf variables x and y of t are not under the scope of 
any quantifiers involving x or y. 

As an example where t is not free for x in 4,  consider the 4 with parse 
tree in Figure 2.5 and let t be f(y, y). Then we may substitute the leftmost 
x leaf since it is not in the scope of any quantifier, but, in substituting the 
x leaf in the left subtree of +, we introduce a new variable y in t which 
becomes bound by Vy. 

What if there are no free occurrences of x in 4 ?  Inspecting the definition 
of 't is free for x in 4', we see that every term t is free for x in 4 in that 
case, since no free variable x of 4 is below some quantifier in the parse tree 
of 4. So the problematic situation of variable capture in performing 4[t/x] 
cannot occur. Of course, in that case +[t/x] is just 4 again. 

It might be helpful to compare 't is free for x in 4' with a precondition of 
calling a procedure for substitution. If you are asked to compute 4[t/x] in 
your exercises or exams, then that is what you should do; but any reasonable 
implementation of substitution used in a theorem prover would have to check 
whether t is free for x in 4 and, if not, rename some variables with fresh 
ones to avoid the undesirable capture of variables. 

EXERCISES 2.3 
1 Let 4 be 

where P and Q are predicates with two arguments. 

* (a) Draw the parse tree of 4. 
* (b) Identify those variable leaves which occur free and those 

which occur bound in 4. 
(c) Is there a variable in 4 which has free and bound occurrences? 

* (d) Consider the terms w (w is a variable), f (x) and g(y, z ) ,  where 
f and g are function symbols with one, respectively two, argu- 
ments. 

(i) Compute 4[wlxl, 4[wlyl, 4lf(x)/YI and 4MYY z)lzl. 
(ii) Which of w, f(x) and g(y,z) are free for x in 4 ?  
(iii) Which of w, f (x) and g(y,z) are free for y in 4 ?  



2.3 Proof theory of predicate logic 

the term j ( y ,  y) is 
not free for x in 
this formula I I 

Fig. 2.5. A parse tree for which a substitution has dire consequences. 

(e) What is the scope of 3x in 4? 
* (f) Suppose that we change 4 to 3x (P(y, z) A (Vx (lQ(x, x) v 

P(x,z)))). What is the scope of 3x now? 

2. (a) Draw the parse tree of the following logical formula y : 

where P is a predicate with three arguments. 
(b) Indicate the free and bound variables in that parse tree. 
(c) List all variables which occur free and bound therein. 
(d) Compute y [tlx], y [tly] and y [tlz], where t equals the term 

g(f(g(y,y)),y). Is t free for x in y? Is t free for y in y ?  Is t 
free for z in v? 

2.3 Proof theory of predicate logic 
2.3.1 Natural deduction rules 

Proofs in the natural deduction calculus for predicate logic are similar to 
those for propositional logic in Chapter 1, except that we have new rules for 
dealing with the quantifiers and with the equality symbol. Strictly speaking, 
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we are overloading the previously established rules for the propositional 
connectives A, V etc. That simply means that any proof rule of Chapter 1 is 
still valid for logical formulas of predicate logic (we originally defined those 
rules for logical formulas of propositional logic). As in the natural deduction 
calculus for propositional logic, the additional rules for the quantifiers and 
equality will come in two flavours: introduction and elimination rules. 

The proof rules for equality 

First, let us state the rules for equality. Here equality does not mean syntactic, 
or intensional, equality, but equality in terms of computation results. In either 
of these senses, any term t has to be equal to itself. This is expressed by the 
introduction rule for equality: 

=1 
t = t  

which is an axiom (as it does not depend on any premises). Notice that it 
may be invoked only if t is a term (our language doesn't permit us to talk 
about equality between formulas). 

This rule is quite evidently sound, but it is not very useful on its own. 
What we need is a principle that allows us to substitute equals for equals 
repeatedly. For example, suppose that y * (w + 2) equals y * w + y * 2; then it 
certainly must be the case that z 2 y * (w + 2) implies z 2 y * w + y * 2 and 
vice versa. We may now express this substitution principle as the rule =e: 

Note that tl and t2 have to be free for x in 4, whenever we want to apply 
the rule =e (this is an example of a side condition of a proof rule). 

Convention 2.8 Indeed, throughout this section, when we write a substitution 
in the form 4[t/x], we implicitly assume that t is free for x in 4 ;  for, as we 
saw in the last section, a substitution doesn't make sense if this is not the 
case. 

We obtain proof 

1 ( x + l ) = ( l + x )  premise 

2 (x + 1 > 1) -+ (x + 1 > 0) premise 

3 (1 + x  > 1) + (1 + x  > 0) =e 1,2 

establishing the validity of the sequent 
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In this particular proof tl is (x+ I), t2 is (1 +x) and 4 is (x > 1) -t (x > 0). 
We used the name =e since it reflects what this rule is doing to data: it 
eliminates the equality in tl = t2 by replacing all tl in 4[tl/x] with t2. 
This is a sound substitution principle, since the assumption that tl equals t2 
guarantees that the logical meanings of 4[tl/x] and 4[t2/x] match. 

The principle of substitution, in the guise of the rule =e, is quite powerful. 
Together with the rule =i, it allows us to show the sequents 

A proof for the first sequent is: 

1 tl = t2 premise 

where 4 is x = tl. 

A proof for the second sequent is: 

1 t2 = t3 premise 

2 tl = t2 premise 

3 tl = t3 =e 1,2 

where 4 is tl = x, so in line 2 we have 4[t2/x] and in line 3 we obtain 
4[t3/x], as given by the rule =e applied to lines 1 and 2. Notice how we 
applied the scheme =e with several different instantiations. 

Our discussion of the rules =i and =e has shown that they force equality 
to be re$exive, symmetric and transitive. These are minimal and necessary 
requirements for any sane concept of (extensional) equality. We leave the 
topic of equality for now to move on to the proof rules for quantifiers. 

EXERCISES 2.4 
1. Prove the following sequents using, among others, the rules =i and 

=e. Make sure that you indicate for each application of =e what the 
rule instances 4, tl and t2 are. 

(a) (y = 0) A (y = x) l- 0 = x 
(b) tl = t2 t- (t +t2) = (t + t l )  

(c) (x = O)V((x+x) > 0) k (y = (x+x)) + ((y > O)V(y = (O+x))). 
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2. Recall that we use = to express the equality of elements in our models. 
Consider the formula 

3x 3y ( 1 ( x  = y) A (Vz ((z = x )  v ( z  = y)))). 

Although we have not yet formally defined what a model A for 
predicate logic looks like, can you say intuitively what this formula 
says about any such model A in plain English? 

* 3. Write down a sentence 43 of predicate logic which intuitively holds 
in a model A if, and only if, that model has exactly three concrete 
values. 

4. Write down a sentence 4<3 - of predicate logic which intuitively holds 
in a model At' iff that model has at most three concrete values. 

* 5. Can you find a sentence of predicate logic b,, which intuitively 
holds exactly in those models which have only finitely many concrete 
values? What 'limitation' of predicate logic causes problems in finding 
such a sentence? 

The proof rules for universal quantijication 

The rule for eliminating V is the following: 

It says: if you have V x  4,  then you could replace the x in 4 by any term t 
(given, as usual, the side condition that t be free for x in 4).  The intuitive 
soundness of this rule is evident: assuming that Vx 4 holds, we should 
certainly be entitled to maintain that 4 [ t / x ]  holds, where t is some term. 

Recall that 4 [ t / x ]  is obtained by replacing all free occurrences of x in 4 
by t .  You may think of the term t as a concrete instance of x.  Since 4 is 
assumed to hold for all x, that should also be the case for any term t .  To see 
the necessity of the proviso that t be free for x in 4, consider the case that 
4 is 

and the term to be substituted for x is y. Let's suppose we are reasoning 
about numbers with the usual 'smaller than' relation. The statement Vx q5 
then says that for all numbers n there is some bigger number m, which is 
indeed true of integers or real numbers. However, $Ly/x] is the formula 
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saying that there is a number which is bigger than itself. This is wrong; 
and we must not allow a proof rule which derives semantically wrong things 
from semantically valid ones. Clearly, what went wrong was that y became 
bound in the process of substitution; y is not free for x in 4. Thus, in going 
from Vx 4 to +[t/x], we have to enforce the side condition that t be free for 
x in 4. 

The rule Vxi is a bit more complicated. It employs a proof box similar to 
those we have already seen in natural deduction for propositional logic, but 
this time the box is to stipulate the scope of the 'dummy variable' xo rather 
than the scope of an assumption. The rule Vxi is written 

It says: if, starting with a 'fresh' variable xo, you are able to prove some 
formula with xo in it, then (because xo is .fresh) you can derive Vx 4. The 
important point is that xo is a new variable which doesn't occur anywhere 
outside the box ; we think of it as an arbitrary term. Since we assumed nothing 
about this xo, anything would work in its place; hence the conclusion Vx 4. 

It takes a while to understand this rule, since it seems to be going from 
the particular case of 4 to the general case Vx 4. The side condition, that 
xo does not occur outside the box, is what allows us to get away with 
this. In particular, the formula 4[xo/x] may only depend on assumptions or 
premises which occur outside the proof box opened by the dummy variable 
xo. These restrictions (a side condition) imply that the case we have for # is, 
after all, quite general. 

To understand this, think of the following analogy. If you want to prove 
to someone that you can (say) split a tennis ball in your hand by squashing 
it, you might say 'OK, give me a tennis ball and I'll split it'. So we give you 
one and you do it. But how can we be sure that you could split any tennis 
ball in this way? Of course, we can't give you all of them, so how could we 
be sure that you could split any one? Well, we assume that the one you did 
split was an arbitrary, or 'random', one, i.e. that it wasn't special in any way 
(like a ball which you had 'prepared' beforehand); and that is enough to 
convince us that you could split any tennis ball. Our rule says that if you 
can prove 4 about an xo that isn't special in any way, then you could prove 
it for any x whatsoever. 

To put it another way, the step from 4 to Vx 4 is legitimate only if we 



114 Predicate logic 

have arrived at 4 in such a way that none of its assumptions contain x 
as a free variable. Any assumption which has a free occurrence of x puts 
constraints on such an x. For example, the assumption bird(x) confines x to 
the realm of birds and anything we can prove about x using this formula 
will have to be a statement restricted to birds and not about anything else 
we might have had in mind. 

It is time we looked at an example of these rules at work. Here is a proof 
of the sequent 

Vx (P (x) -+ Q(x)), Vx P (x) I- Vx Q(x) : 

1 Vx (P (x) -+ Q(x)) premise 

2 Vx P (x) premise 

6 vx Q(x) Vx i 3-5 

Thc structure of this pruuf is guided by the fact that the conclusion is a 
V formula. To arrive at this, we will need an application of Vx i, so we set 
up the box controlling the scope of xo. The rest is now mechanical: we 
prove VxQ(x) by proving Q(xo); but the latter we can prove as soon as 
we can prove P(xo) and P(xo) + Q(xo), which themselves are instances of 
the premises (obtained by Ve with the term xo). Note that we wrote the 
name of the dummy variable to the left of the first proof line in its scope 
box. 

Here is a simpler example which uses only Vxe: we show the sequent 

for any term t: 

1 p(t) premise 

2 Vx (P(x) -+ lQ(x)) premise 

Note that we invoked Vxe with the same instance t as in the assumption 
P(t). If we had invoked Vxe with y, say, and obtained P(y) -+ lQ(y), then 
that would have been valid, but it would not have been helpful in the case 
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that y was different from t. Thus, Vxe is really a scheme of rules, one for 
each term t (free for x in +), and we should make our choice on the basis of 
consistent pattern matching. Further, note that we have rules Vxi and Vxe 
for each variable x. In particular, there are rules Vy i, Vy e and so on. We will 
write Vi and Ve when we speak about such rules without concern for the 
actual quantifier variable. 

Notice also that, although the square brackets representing substitution 
appear in the rules Vi and Ve, they do not appear when we use those rules. 
The reason for this is that we actually carry out the substitution that is asked 
for. In the rules, the expression 4[t/x] means: '4, but with free occurrences 
of x replaced by t'. Thus, if 4 is P(x,y) -+ Q(y,z) and the rule refers to 
4[a/y], we carry out the substitution and write P(x, a) -+ Q(a, z) in the proof. 

A helpful way of understanding the universal quantifier rules is to com- 
pare the rules for V with those for A. The rules for V are in some sense 
generalisations of those for A; whereas A has just two conjuncts, V acts 
like it conjoins lots of formulas (one for each substitution instance of its 
variable). Thus, whereas Ai has two premises, Vx i has a premise 4[xo/x] for 
each possible 'value' of xo. Similarly, where and-elimination allows you to 
deduce from 4 A y, whichever of 4 and y, you like, forall-elimination allows 
you to deduce $[t/x] from Vx 4, for whichever t you like. To say the same 
thing another way: think of Vx i as saying: to prove Vx 4, you have to prove 
4[xo/x] for every possible value xo; while Ai says that to prove A 42 you 
have to prove qbi for every i. 

The proof rules for existential quantijication 

The analogy between V and A extends also to 3 and V; and you could even 
try to guess the rules for 3 by starting from the rules for v and applying 
the same ideas as those that related A to V. For example, we saw that the 
rules for or-introduction were a sort of dual of those for and-elimination; to 
emphasise this point, we could write them as 

where k can be chosen to be either 1 or 2. 
Therefore, given the form of forall-elimination, we can infer that exists- 

introduction must be simply 

Indeed, this is correct: it simply says that we can deduce 3x 4 whenever we 
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have #~[t/x] for some term t (naturally, we impose the side condition that t 
be free for x in 4). 

In the rule 3 ,  we see that the formula 4[t/x] contains, from a computa- 
tional point of view, more information than 3x 4. The latter merely says that 
4 holds for some, unspecified, value of x; whereas 4[t/x] has a witness t at 
its disposal. Recall that the square-bracket notation asks us actually to carry 
out the substitution. However, the notation 4[t/x] is somewhat misleading 
since it suggests not only the right witness t but also the formula 4 itself, 
For example, consider the situation in which t equals y such that 4[y/x] is 
y = y. Then you can check for yourself that 4 could be a number of things, 
like x = x or x = y. Thus, 3x 4 will depend on which of these 4 you were 
thinking of. 

Extending the analogy between 3 and V, the rule Ve leads us to the 
following formulation of 3e : 

Like ve, it is a case analysis. The reasoning goes: we know 3x 4, so 4 is true 
for at least one 'value' of x. So we do a case analysis over all those possible 
values, writing xo as a generic value representing them all. If assuming 
4[xo/x] allows us to prove some x which doesn't mention xo, then this 1 
must be true whichever xo it was. And that's precisely what the rule 3e allows 
us to deduce. Of course, we impose the side condition that xo can't occur 
outside the box (therefore, in particular, it cannot occur in x). The box is 
controlling two things: the scope of xo and also the scope of the assumption 
4 [xolxl. 

Just as Ve says that to use q51 V 42, you have to be prepared for either of 
the 4i, so 3e says that to use 3x 4 you have to be prepared for any possible 
4[xo/x]. Another way of thinking about 3e goes like this: if you know 3x4 
and you can derive some x from 4[xo/x], i.e. by giving a name to the thing 
you know exists, then you can derive x even without giving it the name. 

The rule 3xe is also similar to Ve in the sense that both of them are 
elimination rules which don't have to conclude a subformula of the formula 
they are about to eliminate. Please verify that all other elimination rules 
so far have this subformula property1. This property is computationally 
very pleasant, for it allows us to narrow down the search space for a 

' For Vxe we perform a substitution [ t l x ] ,  but it preserves the logical structure of 4. 
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proof dramatically. Unfortunately, 3xe, like its cousin Ve, is not of that 
computationally benign kind. 

Let us practice these rules on a couple of examples. Certainly, we should 
be able to prove 

In the proof 

1 Vx 4 premise 

2 ~ [ X / X ]  Vxe 1 

3 3 x 4  3 x i 2  

we chose t to be x with respect to both Vxe and to 3x i (and note that x is 
free for x in 4 and that 4[x/x] is simply 4 again). 

A more complicated example is the sequent 

which can be proved by 

1 Vx (P (x) + Q(x)) premise 

2 3x P(x) premise 

3 assumption 

4 

5 -+e 4,3 

The motivation for introducing the box in line 3 of this proof is the existential 
quantifier in the premise 3xP(x) which has to be eliminated. Notice that 
the 3 in the conclusion has to be introduced within the box and observe the 
nesting of these two steps. The formula 3x Q(x) in line 6 is the instantiation 
of x in the rule 3e and it is easy to check that it does not contain an 
occurrence of xo, as required by the condition that there be no xo outside 
the box. 
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The almost identical 'proof' 

Vx (P (x) -, Q(x)) premise 

3x P (x) premise 

assumption 

Qbo) +e 4,3 

Q(xo) 3x e 2,3-5 

3x Q(x) 3x i  6 

is not a legal proof; line 6 allows the fresh parameter xo to escape the scope 
of the box which declares it. This is not permissible and we will see on 
page 120 an example where such illicit use of proof rules results in unsound 
arguments. 

A sequent with a slightly more complex proof is 

which could model some argument such as 

If all quakers are reformists and if there is a protestant who is also a quaker, then 
there must be a protestant who is also a reformist. 

One possible proof strategy is to assume P(xo) A Q(xo), get the instance 
Q(xo) + R(xo) from Vx (Q(x) + R(x)) and use Ae2 to 
Q(xo), which gives us R(xo) via -+e . . . : 

Vx (Q(x) + R(x)) premise 

3x (P(x) A Q(x)) premise 

xo Pbo) A Q(xo) assumption 

Qbo) + W o )  Vx e 1 

Q(x0) Ae2 3 

Rho) +e 4,5 

P(x0) Ael 3 

Pbo) A Rho) Ai 7,6 

3x(P(x)AR(x)) 3x i8  

3x (P(x) A R(x)) 3x e 2,3-9 

get our hands on 
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Note the strategy of this proof: We list the two premises. The second 
premise is of use here only if we apply 3xe to it. This sets up the proof box 
in lines 3-9 as well as the fresh parameter name xo. Since we want to prove 
3x(P(x) A R(x)), this formula has to be the last one in the box (our goal) 
and the rest involves Vx e and 3x i. 

The rules Vi and 3e both have the side condition that the dummy variable 
cannot occur outside the box in the rule. Of course, these rules may still 
be nested, by choosing another name (e.g. yo) for the dummy variable. For 
example, we will prove the sequent 

3x P(x), Vx VY ( P ( 4  -, Q(Y 1) I- VY Q(Y). 

(Look how strong the second premise is, by the way: given any x, y, if P(x), 
then Q(y). This means that, if there is any object with the property P ,  then 
all objects shall have the property Q.) The proof goes as follows: we take 
an arbitrary yo and prove Q(yo); this we do by observing that, since some x 
satisfies P ,  so by the second premise any y satisfies Q: 

1 3x P (x) premise 

2 VxVy (P(x) -t Q(y)) premise 

There is no special reason for picking xo as a name for the dummy variable 
we use for Vx and 3x and yo as a name for Vy and 3y. We do this only 
because it makes it easier for us humans. Again, study the strategy of this 
proof. We ultimately have to show a Vy formula which requires us to use 
Vyi, i.e. we need to open up a proof box (lines 3-8) whose subgoal is to 
prove a generic instance Q(yo). Within that box we want to make use of the 
premise 3x P(x) which results in the proof box set-up of lines 4-7. Notice 
that, in line 8, we may well move Q(yo) out of the box controlled by xo. 

We have emphasised the point that the dummy variables in the rules 3e 
and Vi must not occur outside their boxes. Here is an example which shows 
how things would go wrong if we didn't have this side condition. We could 
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prove the sequent 

3xP(x), vx (P(x) -, Q(x)) I- VY Q(Y) 

which is intuitively unsound. (Compare it with the previous sequent; the 
second premise is now much weaker, allowing us to conclude Q only for 
those objects for which we know P.) Here is an alleged 'proof': 

3x P(x) premise 

Vx (P (x) + Q(x)) premise 

The last step introducing Vy is not the bad one; that step is fine. The bad one 
is the second from last one, concluding Q(xo) by 3xe and violating the side 
condition that xo may not leave the scope of its box. You can try a few other 
ways of 'proving' this sequent, but none of them should work (assuming that 
our proof system is sound with respect to semantic entailment, which we 
define in the next section). Without this side condition, we would also be 
able to prove that 'all x satisfy the property P as soon as one of them does 
so', a semantic disaster of biblical proportions! 

2.3.2 Quantifier equivalences 

We have already hinted at semantic equivalences between certain forms of 
quantification. Now we want to provide formal proofs for some of the most 
commonly used quantifier equivalences. Quite a few of them involve several 
quantifications over more than just one variable. Thus, this topic is also good 
practice for using the proof rules for quantifiers in a nested fashion. 

For example, the formula Vx Vy 4 should be equivalent to Vy Vx 4 since 
both say that 4 should hold for all values of x and y. What about (Vx 4) A 

(Vx ly) versus Vx (4 A ly)? A moment's thought reveals that they should have 
the same meaning as well. But what if the second conjunct does not start 
with Vx? So what if we are looking at (Vx 4) A y in general and want to 
compare it with Vx (4  A y)?  Here we need to be careful, since x might be 
free in y and would then become bound in the formula Vx (4 A y). 
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Here are some quantifier equivalences which you should become familiar 
with. (Recall that we wrote i t -  4 2  in Chapter 1 as an abbreviation for 
41 t- 4 2  and 4 2  I-- $1.) 

Theorem 2.9 Let 4 and y be formulas of predicate logic. Then we have the 
following equivalences: 

1. (a) 1Vx 4 i t -  3x 1 4  
(b) 1 3 ~  4 -k VX 14. 

2. Assuming that x is not free in y: 

(a) V x 4 A v  4- Vx(4Ay)  
Remember that Vx 4 A y is implicitly bracketed as (Vx 4) A y, 
by virtue of the binding priorities. 

(b) V ~ ~ V Y  ++x(4Vy) 
(c) 3 x 4 W  -IF 3 x ( 4 W )  
(4 3 x 4 v v  i t -  3 3 x 4 v v )  
(el Vx(y --, 4) -It- --,Vx# 
(f) 3x($4lp)-it-Vxq5+lp. 
(8) 3x(y + 4) +I- --, 3 x 4  
(h) V x ( 4 - + y ) i t - 3 x 4 + l p .  

3. (a) VxdAVxy i F V x ( 4 A y )  
Remember that Vx 4 A Vx y is implicitly bracketed as (Vx 4) A 

(Vx y), by virtue of the binding priorities. 
(b) 3x 4 v 3x y -IF 3x (4 v y). 

4. (a) Vx Vy 4 i t -  Vy Vx 4 
(b) 3x 3y 4 -IF 3y 3x 4. 

PROOF: We will prove most of these sequents; the proofs for the remaining 
ones are straightforward adaptations and are left as exercises. Recall that we 
sometimes write I to denote any contradiction. 

1. (a) We will lead up to this by proving two simpler sequents first: 
-(pl A p2) t- ~ p 1  V lp:! and then 1Vx P(x) I-- 3x lP(x) .  The 
reason for proving the first of these is to illustrate the close 
relationship between A and V on the one hand and V and 3 
on the other - think of a model with just two elements 1 and 
2 such that pi (i = 1,2) stands for P(x) evaluated at i. The 
idea is that proving this propositional sequent should give us 
inspiration for proving the second one of predicate logic. The 
reason for proving the latter sequent is that it is a special case 
(in which $ equals P(x)) of the one we are really after, so 
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again it should be simpler while providing some inspiration. 
So, let's go. 

'(PI A ~ 2 )  premise 

4 1 ~ 1  V - 7 ~ 2 )  assumption 

assumption 

lp1 V lp2 Vil 3 lp1  V lp2 Vi2 3 

PI RAA 3-5 p2 RAA 3-5 

'PI V l P 2  RAA 2-8 

You have seen this sort of proof before, in Chapter 1. It is an 
example of something which requires proof by contradiction, 
or --e, or LEM (meaning that it simply cannot be proved 
in the reduced natural deduction system which discards these 
three rules) - in fact, we have used the rule RAA three 
times. 
Now we prove +xP(x) I- 3 x l P ( x )  similarly, except that 
where the rules for A and V were used we now use those for 
V and 3: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1Vx P (x) premise 

1 3 ~  l P ( x )  assumption 

p (xo) RAA4-6 1 
Vx P (x) Vx i 3-7 

3x i P ( x )  RAA 2-9 
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You will really benefit by spending time understanding the way 
this proof mimics the one above it. This insight is very useful 
for constructing predicate logic proofs: you first construct a 
similar propositional proof and then mimic it. 

Next we prove 1Vx 4 I- 3x 1 4  : 

4 14  [xo/x] assumption 

5  3xi 4 

6 l e  5,2 

1 1Vx 4 premise 

8  Vx i 3-7 

9 l e  8 , l  

10 3~ 14 RAA 2-9 

2 

The reverse sequent 3x 14 I- 1Vx 4 is more straightforward, 
for it does not involve proof by contradiction, -.lye, or LEM. 
Unlike its converse, it has a constructive proof which the intui- 
tionists do accept. We could again prove the corresponding 
propositional sequent, but we leave that as an exercise. 

-3x -4 assumption I 

3 

4 -4 [xO/x] assumption 

5  

1 3x 14  assumption 

2 ' 4 ~  4 assumption 1 
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(a) The sequent Vx 4 A y t Vx (4 A W )  can be proved thus: 

(vx 4) A v premise 

VX 4 Ael 1 

W Ae2 1 

xo 

4 [XOIXI Vxe 2 

4 [ x o l x l m  Ai5,3 

(4  A y)[xo/x] identical to 6, since x not free in .y, 

vx (6 A W)  Vx i 4-7 

The reverse argument can go like this: 

xo 

(4AW)[xolxl Vxe 1 

4[xo/x] A w identical to 3, since x not free in y, 

W Ae2 3 

4 [XO/X] Ael 3 

Notice that the use of Ai in the last line is permissible, because ty was 
obtained for any instantiation of the formula in line 1. 

3. (b) The sequent (3x 4) V (3x y ) F 3x (4 V y )  has to be proved using 
the rule Ve; so we have two principal cases, each of which 
requires the rule 3x i: 

2 

3 

4 

5 

6 

7 

8 3x(4 V W) ve 1,2-7 

3x 4 

4 [xo /x lv~  [xo/xI 

3x(4vW) 

3x w assumpt. 

xo Y [xolxl assumpt. 

~~xolxlvW[xolxl v i 3  

(4 V W)[xo/x] iden tical 

Md) V W )  3xi 5 

3x(4 v W )  3x e 2,3-6 
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The converse assumes 3x (4  V y) so its proof has to use 3xe 
as its last rule; for that rule, we need to assume 4 V y as a 
temporary assumption and need to conclude (3x 4) V (3xy) 
from those data; of course, the assumption 4 V y, requires the 
usual case analysis : 

4[xo/xI V w [XO/X] identical 

assumption 

3 x 4  V 3xw ve 3,4-6 

4. (b) In assuming 3x 3y 4, we have to nest 3x e and 3y e to conclude 
3y 3x 4. Of course, we have to obey the format of these elimi- 
nation rules as done below: 

3 x 3 ~  4 premise 

xo (3y 4)[xo/x] assumption 

3y (4[xo/x]) identical, since x, y different variables 

YO 4 [xolxl bolyl assumption 

4Lvo/y] [xo/x] identical, since x, y, xo, yo different variables 

3x 4 ~ o / Y ]  Vxi 5 

3~ 3x 4 Vyi 6 

3~ 3x 4 3y e3,4-7 

3Y 3x 4 3x el, 2-8 

The converse is proven in the same way by swapping the roles 
of x and y. 

EXERCISES 2.5 
1. The rules for V are very similar to those for A and those for 3 are just 

like those for v. 
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(a) Find a (propositional) proof for 4 -+ (ql A q2) k (4 -+ ql) A 

(4 -, q2). 
(b) Find a (predicate) proof for 4 --, VxQ(x) k Vx(4 --, Q(x)), 

provided that x is not free in 4. 
(Hint: whenever you used A rules in the (propositional) proof 
of the previous item, use V rules in the (predicate) proof.) 

(c) Find a proof for Vx (P(x) -+ Q(x)) 1- Vx P(x) --, Vx Q(x). 
(Hint : try ( ~ 1  --, q1) A ( ~ 2  + q2) I- P1 A P2 --, 41 A q2 first.) 

* (d) Prove Vx (P (x) A Q(x)) 1- Vx P (x) A Vx Q(x). 
* (e) Prove Vx P(x) V Vx Q(x) k Vx (P(x) V Q(x)). 
* (f) Prove 3x (P(x) A Q(x)) k 3x P(x) A 3x Q(x). 
* (g) Prove 3x F(x) V 3x G(x) 3x (F(x) V G(x)). 

(h) Prove Vx Vy (S(y) -* F(x)) k 3yS(y) + Vx F(x). 

2. What is the propositional logic sequent that corresponds to 3x 1 4  I- 
7Vx q5? Prove it. 

3. Provide proofs for the following sequents: 

4. The sequents below look a bit tedious, but in proving them you make 
sure that you really understand how to nest the rules: 

* (a) VxVy P(x,y) VuVv P(u,v) 
(b) 3x 3y F(x, y) k 3u 3v F(u, v)  

* (c) 3xVyP(x,y) tVy3xP(x,y).  
5. In the following exercises, involving the proof rules for quantifiers, 

whenever you use a rule, you should mention how the relevant syn- 
tactic restrictions are satisfied. 

(a) Prove one direction of l(b) of Theorem 2.9: 13x 4 I- Vx 16. 
(b) Prove 2(b), 2(c), 2(d), 2(e) and 2(f) of Theorem 2.9. 
(c) Prove 3(a) of Theorem 2.9: (Vx 4) A(Vx y) i t -  Vx (4 A y);  recall 

that you have to do two separate proofs. 
(d) Prove both directions of 4(a) of the last theorem: VxVy 4 +I- 

vy Vx 4. 
6.  Prove the following sequents in predicate logic, where P and Q are 

predicates with one argument: 
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7. Just like natural deduction proofs for propositional logic, certain 
things that look easy can be hard to prove for predicate logic. Typ- 
ically, these involve the 11 rule. The patterns are the same as in 
propositional logic : 

(a) Proving p V q I- l ( 1 p  A l q )  is quite easy. Try it. 
(b) Show 3xP(x) t -tVxlP(x). 
(c) Proving -.(-.lp A l q )  t p V q is hard; you have to try to prove 

+p V q) first and then use the lie rule. Do it. 

* (d) Prove 1Vx 1 P  (x) t- 3x P(x). 
* (e) Prove Vx 1 P  (x) k 4 x  P (x). 
* (f) Prove -.l3xP(x) + VxlP(x). 

8. The proofs of the sequents below combine the proof rules for equality 
and quantifiers. We write 4 ++ y, as an abbreviation for (4 -+ y)) A 

(W -+ 4). 
* (a) P (b) t Vx (x = b -+ P (x)) 

(b) P(b), VxVy (P(x) A P(y) -+ x = y) Vx (P(x) ++ x = b) 

* (c) 3x 3y (H(x, y) V H(y, x)), 73x H(x, x) I- 3x3y 4 x  = Y )  
(d) Vx (P(x) tt x = b) P(b) A VxVy (P(x) A P(y) -+ x = y). 

9. Prove the following sequents in predicate logic: 

10. Show by natural deduction: 
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1 1. Prove the following sequents in predicate logic : 

12. Translate the following argument into a sequent in predicate logic 
using a suitable set of predicate symbols: 
If there are any tax payers, then all politicians are tax payers. If there are 
any philanthropists, then all tax payers are philanthropists. So, if there are any 
tax-paying philanthropists, then all politicians are philanthropists. 

Now come up with a proof of that sequent in predicate logic. 
13. Discuss in what sense the equivalences of Theorem 2.9 form the basis 

of an algorithm which pushes quantifiers to the top of a formula's 
parse tree. 

2.4 Semantics of predicate logic 

Having seen how natural deduction of propositional logic can be extended 
to the predicate case, let's now look at how the semantics of predicate logic 
works. Just like in the propositional case, the semantics should provide a sep- 
arate, but ultimately equivalent, characterisation of the logic. By 'separate', 
we mean that the meaning of the connectives is defined in a different way; in 
proof theory, they were defined by proof rules providing an operative expla- 
nation. In semantics, we expect something like truth tables. By 'equivalent', 
we mean that we should be able to prove soundness and completeness, as 
we did for propositional logic (although a fully fledged proof of soundness 
and completeness for predicate logic is beyond the scope of this book). 

Before we begin describing the semantics of predicate logic, let us look 
more closely at the real difference between a semantic and a proof-theoretic 
account. In proof theory, the basic object which is constructed is a proof. 
Let us write F as a shorthand for lists of formulas &, cb2,. . . , 4,. Thus, to 
show that r I- 6, we need to provide a proof of 4 from T. Yet, how can we 
show that 6 is not a consequence of r? Intuitively, this is harder; how can 
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you possibly show that there is no proof of something? You would have to 
consider every 'candidate' proof and show it is not one. Thus, proof theory 
gives a 'positive' characterisation of the logic; it provides convincing evidence 
for assertions like r I- 4, but it is not very useful for establishing I- Y 4. 

Semantics, on the other hand, works in the opposite way. To show that 4 
is not a consequence of T is the easy bit: you simply give a model of T which 
is not a model of 4. Showing that 4 is a consequence of T, on the other 
hand, is harder in principle. For propositional logic, you need to show that 
every valuation (an assignment of truth values to all atoms involved) that 
makes r true also makes 4 true. If there is a small number of valuations, this 
is not so bad. However, when we look at predicate logic, we will find that 
there are infinitely many models to consider (the notion corresponding to 
the valuation in propositional logic is called a model). Thus, in semantics, we 
have a 'negative' characterisation of the logic. We find establishing assertions 
of the form r t+ 4 (4 is not a semantic entailment of all formulas in r) easier 
than establishing r t= 4 (4 is a semantic entailment of T), for in the former 
case we need only talk about one model, whereas in the latter we have to 
talk about infinitely many. 

All this goes to show that it is important to study both proof theory and 
semantics. For example, if you are trying to show that 4 is not a consequence 
of and you have a hard time doing that, you might want to change your 
strategy for a while by trying to prove r t- 4. If you find a proof, you 
know for sure that 4 is a consequence of r. If you can't find a proof, then 
your attempts at proving it often provide insights which lead you to the 
construction of a counter example. The fact that proof theory and semantics 
are equivalent is amazing, but it does not stop them having separate roles in 
logic, each meriting close study. 

2.4.1 Models 

Recall how we evaluated formulas in propositional logic. For example, given 
the propositional formula 

( P V  1 q )  -, ( q  + P )  

we evaluated this expression by computing a truth value (T or F) for it, 
based on a given valuation (assumed truth values for p  and q). This activity 
is essentially the construction of one line in the truth table of ( p  v y q )  + 

( q  + p).  How can we evaluate formulas in predicate logic? We 'enrich' the 
formula above to 
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Could we simply assume truth values for P(x), Q(y), Q(x) and P(y) and 
compute a truth value as before? Not quite, since we have to reflect the 
meaning of the quantifiers Vx and 3y, their dependences and the actual 
parameters of P and Q - a formula Qx 3y R(x, y) generally means something 
else other than 3y Vx R(x, y); why? The problem is that variables are place 
holders for any, or some, unspecified concrete value. Such values can be 
of almost any kind: students, birds, numbers, complicated mathematical 
objects, data structures, programs and so on. 

Thus, if we encounter a formula 3y y ,  we try to find some instance of 
y (some concrete value) such that y holds for that particular instance of 
y. If this succeeds (i.e. there is such a value of y for which y holds), then 
3y y, evaluates to T; otherwise (i.e. there is no concrete value of y which 
realises y,) it returns F. Dually, evaluating Vx y amounts to showing that 
y evaluates to T for all possible values of x;  if this is successful, we know 
that Vx y, evaluates to T; otherwise (i.e. there is some value of x such that 
y computes F) it returns F. Of course, such evaluations of formulas require 
a fixed universe of concrete values, the things we are, so to speak, talking 
about. Thus, the truth value of a formula in predicate logic depends on, and 
varies with, the actual choice of values and the meaning of the predicate and 
function symbols involved. 

If variables can take on only finitely many values, we can write a program 
that evaluates formulas in a compositional way. If the root node of q5 is A, 
V, + or 1, we can compute the truth value of 4 by using the truth table of 
the respective logical connective and by computing the truth values of the 
subtree(s) of that root, as discussed in Chapter 1. If the root is a quantifier, 
we have sketched above how to proceed. This leaves us with the case of 
the root node being a predicate symbol P (in propositional logic this was 
an atom and we were done already). Such a predicate requires n arguments 
which have to be terms tl, t2,. . . , t,. Therefore, we need to be able to assign 
truth values to formulas of the form P(tl,  t2,. . . , t,). 

For formulas P(tl ,  t 2 , .  . . , t,), there is more going on than in the case of 
propositional logic. For n = 2, the predicate P could stand for something 
like 'the number computed by tl is less than, or equal to, the number 
computed by tz'. Therefore, we cannot just assign truth values to P in a 
random fashion. We require a model of all function and predicate symbols 
involved. For example, terms could denote real numbers and P could denote 
the relation 'less than or equal to' on the set of real numbers. 

Definition 2.10 Let 9 be a set of function symbols and 9 a set of predicate 
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symbols, each symbol with a fixed number of required arguments. A model 
A' of the pair (9,Y) consists of the following set of data: 

1. A non-empty set A, the universe of concrete values; 
2. for each f E F with n arguments a concrete function 

from An, the set of n-tuples over A, to A; and 
3 .  for each P E -9 with n arguments a subset pA c An of n-tuples over 

A. 

The distinction between f and f A and between P and P-" is most important. 
The symbols f and P are just that: symbols, whereas fd and P& denote a 
concrete function and relation in a model A ,  respectively. 

def Example 2.11 Let F {+, *, -) and 9 = {=, 2, <,zero), where +, * and - 
take two arguments and s one; and where =, 5 and < are predicates with 
two arguments and zero is a predicate with just one argument. We choose 
as a model dl the following: 

1. The non-empty set A is the set of real numbers. 
2. The functions f A ,  *& and -A take two real numbers as arguments 

and return their sum, product and diflerence, respectively. 
3. The predicates =&, @ and <=" model the relations equal to, less 

than and strictly less than, respectively. The predicate zero./ holds for 
r iff r equals 0. 

Example 2.12 Let F g {e, .} and 9 g (1, where e is a constant, - is a 
function of two arguments and I is a predicate in need of two arguments 
as well. Again, we write - and I in infix notation as in 

(tl ' t2) 1 (t . t). 
The model A we have in mind has as set A all binary strings, finite words 
over the alphabet (0, I), including the empty string denoted by E. The 
interpretation eel of e is just the empty word e. The interpretation A' o f .  is 
the concatenation of words. For example, 0110 1110 equals 01 101 110. In 
general, if ala2.. . ak and hlb2.. . bn are such words with ai, ki E (0, I), then 
ala2.. . ak bl b2.. . bn equals ala2.. . akblb2.. . b,. Finally, we interpret I as 
the pre$x ordering of words. We say that sl is a preJx of s2 if there is a binary 
word s3 such that sl .A s3 equals sz. For example, 011 is a prefix of 01 1001 
and 011, but 010 is not. Thus, is the set {(sl,s2) I sl is a prefix of s2). 
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Here are some formulas in predicate logic which we want to check on this 
model informally : 

In our model, the formula 

Vx((x I x . e )  A ( x . e  I x)) 

says that every word is a prefix of itself concatenated with the empty word 
and conversely. Clearly, this holds in our model, for s .M c is just s and 
every word is a prefix of itself. 
In our model, the formula 

says that there exists a word s that is a prefix of every other word. This is 
true, for we may chose 6 as such a word (there is no other choice in this 
case). 
In our model, the formula 

says that every word has a prefix. This is clearly the case and there are in 
general multiple choices for y, which are dependent on x. 
In our model, the formula VxVy Vz ((x I y) -+ (x . z 5 y . z)) says that 
whenever a word sl is a prefix of s2, then sls has to be a prefix of szs for 
every word s. This is clearly not the case. For example, take sl as 01, s2 as 
01 1 and s to be 0. 

0 In our model, the formula 

73x vy ((x 5 y) -, (y I x)) 

says that there is no word s such that whenever s is a prefix of some other 
word sl, it is the case that sl is a prefix of s as well. This is true since there 
cannot be such an s. Assume, for the sake of argument, that there were 
such a word s. Then s is clearly a prefix of SO, but SO cannot be a prefix 
of s since SO contains one more bit than s. 

It is crucial to realise that the notion of a model is extremely liberal and 
open-ended. All it takes is to choose a non-empty set A, whose elements 
model real-world objects, and a set of concrete functions and relations, one 
for each function, respectively predicate, symbol. The only mild requirement 
imposed on all of this is that the concrete functions and relations on A have 
the same number of arguments as their syntactic counterparts. 

However, you, as a designer or implementor of such a model, have the 
responsibility of choosing your model wisely. Your model should be a 
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sufficiently accurate picture of whatever it is you want to model, but at the 
same time it should abstract away (= ignore) aspects of the world which are 
irrelevant from the perspective of your task at hand. 

For example, if you build a database of family relationships, then it would 
be foolish to interpret father-oflx, y) by something like 'x  is the daughter of 
y'. By the same token, you probably would not want to have a predicate 
for 'is taller than', since your focus in this model is merely on relationships 
defined by birth. Of course, there are circumstances in which you may want 
to add additional features to your database. 

Given a model A%! for a pair (9,P) of function and predicate symbols, 
we are now almost in a position to formally compute a truth value for 
all formulas in predicate logic which involve only function and predicate 
symbols from (F,Y).  There is still one thing, though, that we need to 
discuss. Given a formula Vx 4 or 3x 4, we intend to check whether 4 holds 
for all, respectively some, value a in our model. While this is intuitive, we 
have no way of expressing this in our syntax: the formula 4 usually has x 
as a free variable; 4 [ a / x ]  is well-intended, but ill-formed since rb[a/x] is not 
a logical formula, for a is not a term but an element of our model. 

Therefore we are forced to interpret formulas relative to an enuironment. 
You may think of environments in a variety of ways. Essentially, they are 
look-up tables for all variables; such a table 1 associates with every variable 
x a value l(x) of the model. So you can also say that environments are 
functions 

1 : var -+ A 

from the set of variables var to the universe of values A of the underlying 
model. Given such a look-up table, we can assign truth values to all formulas. 
However, for some of these computations we need updated look-up tables. 

Definition 2.13 Let 1 be a look-up table for a universe of concrete values A 
and let a E A. We denote by l [ x  H a] the look-up table which maps x to a 
and any other variable y to l(y). 

Finally, we are able to give a semantics to formulas of predicate logic. For 
propositional logic, we did this by computing a truth value. Clearly, it suffices 
to know in which cases this value is T. 

Definition 2.14 Given a model JY for a pair (P,9) and given an environment 
1, we define the satisfaction relation 
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for each logical formula q5 over the pair ( F , 9 )  by structural induction on 
4. The denotation A t=l q5 says that 4 computes to T in the model Jat with 
respect to the environment 1. 

P:  If 4 is of the form P(tl, t2,. . . , tn), then we interpret the terms 
tl, t2,. . . , tn in our set A by replacing all variables with their values 
according to I .  In this way we compute concrete values al, a2,. . . ,an 
of A for each of these terms, where we interpret any function symbol 
f E B by fA.  Now A k1 P(tl, t2,. . . , t,) holds iff (al, a2,. . . ,an)  is in 
the set pA. 

Vx: The relation A k l  Vx y, holds iff A El[,,] y holds for all a E A. 
3x: Dually, A k l  3x y, holds iff A k1[,,] y, holds for some a E A. 
-1: The relation A k l  l y  holds iff it is not the case that Jat k l  y holds. 
v: The relation A y,1 V y,2 holds iff A t=[ yl or A k1 y2 holds. 
A: The relation A k1 y,l A y2 holds iff A k l  y,l and A kl  y2 hold. 

-P: The relation A kr  y,l + y,z holds iff A t=l y2 holds whenever 
A E l  yl holds. 

We sometimes write A 4 to denote that A k l  4 does not hold. 

There is a straightforward inductive argument on the height of the parse 
tree of a formula which says that Jat k l  4 holds iff A Ell 4 holds, whenever 
1 and 1' are two environments which are identical on the set of free variables 
of 4. In particular, if 4 has no free variables at all, we then call 4 a sentence; 
we conclude that A k l  4 holds, or does not hold, regardless of the choice 
of 1. Thus, for sentences 4 we often write 

since the choice of an environment 1 is then irrelevant. 

Example 2.15 Let us illustrate the definitions above by means of another 
simple example. Let B 2 {alma) and 9 {loves} where alma is a constant 
and loves a predicate with two arguments. The model A we choose here 
consists of the set A {a, b,c), the constant function almaM a and the 
predicate 

lovesA 2 {(a, a), (b, a), (c, a)), 

which has two arguments as required. We want to check whether the model 
A satisfies 

None of Alma's lovers' lovers love her. 
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First, we need to express the, morally worrying, sentence in predicate logic. 
Here is such an encoding (one is often able to find other encodings which 
differ slightly from the one that is closest to the linguistic and semantic 
structure of the sentence): 

VxVy (loves(x, alrna) A loves(y, x) -+ lloves(y, alma)). 

Does the model A satisfy this formula? Well, it does not; for we may 
choose a for x and b for y. Since (a, a) is in the set lovesM and (b, a) is in 
the set lovesM, we would need that the latter does not hold since it is the 
interpretation of loves(y, alrna); this cannot be. 

And what changes if we modify A to A' ,  where we keep A and alma-", 
but redefine the interpretation of loves as 

lovesM' 2 { (b ,  a), (c, b))"? 

Well, now there is exactly one lover of Alma's lovers, namely c; but c is not 
one of Alma's lovers. Thus, the formula above holds in the model A'. 

EXERCISES 2.6 
* 1. Consider the formula 

Obviously, Q is a predicate with three arguments and g a function 
with two arguments. Find two models A and A' with respective 
environments 1 and 1' such that A !=[ 4 but A' !#/I 4. 

2. Consider the sentence 

4 vx 3y  32 (P(x, y) A P(z, y) A ( P ( x ,  z) + P(z, x))). 

Which of the following models satisfies +? 

(a) The model A consists of the set of natural numbers with 
M def P -{(m,n)(m<n) .  

(b) The model A' consists of the set of natural numbers with 
def 

P~ = {(m, 2 * m) 1 m natural number). 
(c) The model A" consists of the set of natural numbers with 

N def 
P~ = {(m,n) I m e  n +  1). 

3. Let P be a predicate with two arguments. Find a model A which 
satisfies the sentence Vx lP(x,x).  Find also a model A' such that 
A' I# vx -lP (x, x). 
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4. Consider the sentence Vx(3yP(x, y) A (3zP(z,x) -, VyP(x,y))). We 
already noted that its meaning in a given model is independent of the 
chosen look-up table 1. Please simulate the evaluation of this sentence 
in a model of your choice, focusing on how the initial look-up table 
1 grows and shrinks like a stack when you evaluate its subformulas 
according to the definition of the satisfaction relation. 

5. Let 9 % I d ,  f ,g),  where d is a constant symbol, f a function symbol 
with three arguments and g a function symbol with two arguments. 
As model A ,  we choose the set of natural numbers O,1,2,. . .. Further, 
dA !L!' 2, fA(k,n,m) k * n + m and gM(k,n) k + n * n. E.g. 
f M(l,  2,3) equals 5 and g.A(2, 3) equals 11. Assuming a look-up table 
1 with l(x) 5 and l(y) 7, compute the meaning of the terms below 
in the model A!: 

* (a) f (d,x,d) 
(b) f k(x ,  4 ,  Y ,  g(d, 4 )  
(c) g(f (g(4 Y), f (x, g(d, 4 ,  x), Y), f (Y, g(d, 494) .  

6. Let 4 be the formula 

where R is a predicate symbol of two arguments. 

* (a) Let A {a, b, c, d} and R& {(b, c) ,  (b, b), (b, a)}. Do we have 
dl I= 4 ?  Justify your answer, whatever it is. 

1 def * (b) Let A' {a, b, c) and R& = {(b, c), (a, b), (c, b)}. Do we have 
A' I= 4 ?  Justify your answer, whatever it is. 

2.4.2 Semantic entailment 

Given a model Jl for a formula 4 and an environment 1 for A', we have 
learned how to check whether A' satisfies 4 with respect to 1; the affirmative 
we denoted as A' I=! 4. This is strikingly different from what happened in 
propositional logic. There we had a list of formulas on the left-hand side of 
the sign k. We wrote $q, $2,. . . , q5,, b y to express the semantic entailment of 
y, from 4,,42,.. . ,&:  whenever all &, 42,. . . , &  evaluate to T, the formula 
y, evaluates to T as well. How can we define such a notion for formulas in 
predicate logic? 

Definition 2.16 Let 41, 42,. . . , cPn, y, be formulas in predicate logic. Then 
41,42 ,..., 4n k Y) denotes that, whenever A' kl 4i for 1 I i < n, then 
A I=/ y ,  for all models A! and look-up tables 1. 
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The symbol I= is overloaded in predicate logic. We use it to denote satisfia- 
bility : 

there is some model A with A I= q5 

of sentences and semantic entailment: 

of formulas. Computationally, each of these notions means trouble. First, 
establishing A t= 4 will cause problems, if done on a machine, as soon as the 
universe of values A of &if is infinite. For example, if 4 is a sentence of the 
form Vx y ,  then we need to verify &if k[-,] y, for infinitely many elements 
a. 

Second, and much more seriously, in trying to verify 4 ~ ~ , .  . . ,q5, I= y,  
we have to check things out for all possible models, i.e. all models which are 
equipped with the right structure (i.e. they have functions and predicates 
with the matching number of arguments). This task is impossible to perform 
mechanically. This should be contrasted to the situation in propositional 
logic, where the computation of the truth tables of the propositions involved 
was the basis for computing this relationship successfully. 

However, we can sometimes reason that certain semantic entailments are 
valid. We do this by providing an argument that does not depend on the 
actual model at hand. Of course, this works only for a very limited number 
of cases. The most prominent ones are the quantiJier equivalences which we 
already encountered in the section on natural deduction. 

Let us look at a couple of examples of semantic entailment. 

The justification of the semantic entailment 

is as follows. Let &if be a model satisfying Vx(P(x) -, Q(x)). We need 
to show that A' satisfies VxP(x) -+ VxQ(x) as well. On inspecting the 
definition of A I= y,l 4 y , ~ ,  we see that we are done if not every element 
of our model satisfies P. Otherwise, every element does satisfy P. But 
since &if satisfies Vx (P(x) -, Q(x)), the latter fact forces every element of 
our model to satisfy Q as well. By combining these two cases (i.e. either 
all elements of &if satisfy P ,  or not) we have shown that A' satisfies 
Vx P(x) -+ Vx Q(x). 
What about the converse of the above? Is 

Vx P (x) 4 Vx Q(x) k Vx (P (x) --+ Q(x)) 
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valid as well? Hardly! Suppose that A' is a model satisfying Vx P(x) -, 
Vx Q(x). If A' is its underlying set and PA' and Q-g' are the corresponding 
interpretations of P and Q, then A' != Vx P(x) -, Vx Q(x) simply says that, 
if pA' equals A', then QA' must equal A' as well. However, if P ~ '  does not 
equal A', then this implication is vacuously true (remember that F -, . = T 
no matter what . actually is). In this case we do not get any additional 
constraints on our model A'. After these observations, it is now easy to 

def def construct a counter example. Let A' {a, b), P.." = {a) and Q~ = {b). 
Then A' t= VxP(x) -, Vx Q(x) holds, but A' != Vx (P(x) -, Q(x)) does 
not. 

2.4.3 The semantics of equality 

We have already pointed out the open-ended nature of the semantics of 
predicate logic. Given a predicate logic over a set of function symbols F and 
a set of predicate symbols 9, we need only a non-empty set A equipped with 
concrete functions f4' (for f E 9) and concrete predicates PA (for P E 8) 
in A which have the number of arguments agreed upon in our specification. 
Of course, we also stressed that most models have natural interpretations of 
functions and predicates, but notions like semantic entailment: 

really depend on all possible models, even the ones that don't seem to make 
any sense. Apparently there is no way out of this peculiarity. For example, 
where would you draw the line between a model that makes sense and one 
that doesn't? And would any such choice, or such a set of criteria, not be 
subjective? Such constraints could also forbid a modification of your model 
if this alteration were caused by a slight adjustment of the problem domain 
you intended to model. You see that there are a lot of good reasons for 
maintaining such a liberal stance towards the notion of models in predicate 
logic. 

However, there is one famous exception. Often one presents predicate logic 
such that there is always a special predicate = available to denote equality 
(recall Section 2.3.1); it has two arguments and 

has the intended meaning that the terms tl and tz compute the same thing. 
We discussed its proof rule in natural deduction already in Section 2.3.1. 
Semantically, one recognises the special role of equality by imposing on an 
interpretation function to be actual equality on the set A. Thus, (a, b) is 
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in the set =A iff a and h are the same elements in the set A. For example, 
given A {a, b, c), we are forced to interpret equality such that =" is just 

Hence the semantics of equality is easy, for it is always modelled extensionally. 

EXERCISES 2.7 
* 1. Consider the three sentences 

which express that the binary predicate P is reflexive, symmetric and 
transitive, respectively. Show that none of these sentences is semanti- 
cally entailed by the other ones by choosing for each pair of sentences 
above a model which satisfies these two, but not the third sentence - 
essentially, you are asked to find three binary relations, each satisfying 
just two of these properties. 

* 2. Show the semantic entailment 

Vx P (x) V Vx Q(x) b Vx (P (x) V Q(x)). 

3. Prove Vx+ k 4 x 4 ;  for that you have to take any model which 
satisfies Vx 74 and you have to reason why this model must also 
satisfy 13x 4. You should do this in a similar way to the examples in 
Section 2.4.2. 

4. Let 4 and and q be formulas of predicate logic such that they 
contain no free variables. 

(a) If y is a semantically entailed by 4, is it necessarily the case 
that y is not semantically entailed by 7 4 ?  

* (b) If y is semantically entailed by 4 A y, is it necessarily the case 
that y is semantically entailed by 4 and semantically entailed 

by 1?? 
(c) If y is semantically entailed by 4 or by q, is it necessarily the 

case that y is semantically entailed by 4 V y? 
(d) Explain why y is semantically entailed by $ iff 4 -+ y is valid, 

i.e. true in all models. 

5. Show 



2.5 Undecidability of predicate logic 

We conclude our introduction to predicate logic with some negative results. 
Given a formula 4 in propositional logic we can, at least in principle, de- 
termine whether I= + holds: if 4 has n propositional atoms, then the truth 
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table of 4 contains 2n lines; and I= 4 holds if, and only if, the column for 4 
contains only T entries. 

The bad news is that such a mechanical procedure, working for all formulas 
#, cannot be provided if 4 is a formula in predicate logic. We will give a 
formal proof of this negative result, though we rely on an informal (yet 
intuitive) notion of computability. 

The problem of determining whether a predicate logic formula is valid is 
known as a decision problem. A solution to a decision problem is a program 
(written in Java, C, or any other common language) that takes problem 
instances as input and always terminates, producing a correct 'yes' or 'no' 
output. In the case of the decision problem for predicate logic, the input to 
the program is an arbitrary formula q5 of predicate logic and the program is 
correct if it produces 'yes' if the formula is valid and 'no' if it is not. Note 
that the program which solves a decision problem must terminate for all 
well-formed input: a program which goes on thinking about it for ever is 
not allowed. 

The decision problem at hand is this: 

Validity in predicate logic. Given a logical formula in predicate logic, does 
k q5 hold, yes or no ? 

We now show that this problem is not solvable; we cannot write a correct 
C or Java program that works for all 4.  It is important to be clear about 
exactly what we are stating. Naturally, there are some 4 which can easily be 
seen to be valid; and others which can easily be seen to be invalid. However, 
there are also some q5 for which it is not easy. Every 4 can, in principle, be 
discovered to be valid or not, if you are prepared to work arbitrarily hard 
at it; but there is no uniform mechanical procedure for determining whether 
# is valid which will work for all 4.  

We prove this by a well-known technique called problem reduction. That 
is, we take some other problem, of which we already know that it is not 
solvable, and we then show that the solvability of our problem entails the 
solvability of the other one. This is a beautiful application of the proof rule 
RAA, since we can then infer that our own problem cannot be solvable as 
well. 

The problem that is known not to be solvable is interesting in its own right 
and, upon first reflection, does not seem to have a lot to do with predicate 
logic; it is the Post correspondence problem: 
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The Post correspondence problem. Given a Jinite sequence of pairs (sly tl), 
(s2, t2), . . . , (sky tk) such that all si and ti are binary strings of positive length, is 
there a sequence of indices il, i2,. . . , in with n 2 1 such that the concatenation 
of strings Si, Si2 . . . Sin  equal^ ti, ti2 . . . ti, ? 

Here is an instance of the problem which we can solve successfully: the 
concrete correspondence problem instance C is given by a sequence of three 
pairs 

c ((1, lOl), (10, OO), (01 1, 11)) 
def def def so sl = 1, s2 = 10 and s3 = 011, whereas t l  2 101, t2 00 and t3 11. 

A solution to the problem is the sequence of indices (1,3,2,3) since ~ 1 ~ 3 ~ 2 ~ 3  

and tlt3t2t3 both equal 101110011. Maybe you think that this problem must 
surely be solvable; but remember that a computational solution would have 
to be a program that solves all such problem instances. Things get a bit 
tougher already if we look at this (solvable) problem: 

def def def def 
Sl  = 001 S2 = 01 S3 = 01 Sq = 10 

def def def 
t, = 0 t2 = 011 t3 = 101 t', a m 1 .  

You are invited to solve this by hand, or by writing a program for this 
specific instance. 

Note that the same number can occur in the sequence of indices, as 
happened in the first example in which 3 occurs twice. This means that the 
search space we are dealing with is infinite, which should give us a strong 
intuition that the problem is unsolvable. We do not formally prove it in this 
book. 

The proof of the following theorem is due to the mathematician A. Church. 

Theorem 2.17 The decision problem of validity in predicate logic is undecid- 
able: there is no procedure which, given any 4, decides whether I= 4 holds. 

PROOF: AS said before, we pretend that validity is decidable for predicate 
logic and thereby solve the (insoluble) Post correspondence problem. Given 
a correspondence problem instance C : 

we need to be able to construct, within finite space and time, some formula 
4 of predicate logic such that b 4 holds iff the correspondence problem 
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instance C above has a solution. As function symbols, we choose a constant 
e and two function symbols f o  and f l  each of which requires one argument. 
We think of e as the empty string, or word, and f o  and f 1 symbolically stand 
for concatenation with 0, respectively 1. So if b l b 2 . .  . bl is a binary string of 
bits, we can code that up as the term 

Note that this coding spells that word backwards. To facilitate reading those 
formulas, we abbreviate terms like f b, (fb,- l  . . . ( f  ( f  bl ( t ) ) )  . . . ) by f bl b2...bl ( t ) .  

We also require a predicate symbol P which expects two arguments. 
The intended meaning of P ( s , t )  is that there is some sequence of indices 
(il, i2,. . . , im) such that s is the term representing si, si2 . . . si, and t represents 
ti,ti,. . . ti,. Thus, s constructs a string using the same sequence of indices as 
does t ;  only s uses the si whereas t uses the t i .  

Our sentence 4 has the coarse structure 

where we set 

def 
$9 = 32 P ( z , z ) .  

Our claim is that formula 4 holds in all models iff the Post correspondence 
problem C has a solution. 

First, let us assume that k 4. Our strategy is to find a model for 4 
which tells us there is a solution to the correspondence problem C simply by 
inspecting what it means for 4 to satisfy that particular model. The universe 
of concrete values A of that model is the set of all finite, binary strings 
(including the empty one). The interpretation ed of the constant e is just 
that empty word. The interpretation of f o  is the unary function f f  which 
appends a 0 to a given word: 

f f ( s )  so; 

similarly, 
def f f ( s )  = sl 
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appends a 1 to a given word. The interpretation of P on A' is just what we 
expect it to be: 

P" $2 {(s, t) I there is a sequence of indices (il, i2,. . . , i,) such that 
s equals sj, si2 . . . si, and t equals til ti2 . . . ti,), 

where s and t are binary strings and the si and ti are the data of the 
correspondence problem C. Thus, a pair of words (s, t) lies in PA if, using 
the same sequence of indices (il, i2,. . . , i,), s is built using the corresponding 
si and t is built using the respective ti. 

We now show that the fact that 4 holds in the model A implies that 
C is solvable. First, note that A satisfies $1 and 4 2 .  For example, 4 2  says 
about 4 that, if the pair (s,t) is in P ~ ,  then the pair (ssi, t ti) is also 
in P" for i = 1,2,. . . ,k (you can verify this by inspecting the definition 
of P"'). Now (s, t) E Pdg implies that there is some sequence (il, iz,. . . , i,) 
such that s equals si, si2 . . . si, and t equals ti, ti2 . . . ti,. We simply choose the 
new sequence (il, i2,. . . , i,, i) and observe that s si equals si1si2 . . . si,si and t ti 
equals til ti2 . . . ti, ti. (Why does A i= hold?) 

Since A I= A 42 --+ 4 3  and A i= A 4 2 ,  it follows that A k 43. By 
definition of 4 3  and PA, this tells us there is a solution to C. 

Conversely, let us assume that the Post correspondence problem C has 
some solution, namely the sequence of indices (il, i2,. . . , in). Now we have to 
show that, if A" is any model having a constant el1, two unary functions, ffl and fiA1, and a binary predicate pA1, then that model has to satisfy 4. 
Notice that the root of the parse tree of 4 is an implication, so this is the 
crucial clause for the definition of 4' i= 4. By that very definition, we are 
already done if A'' or if A' 42.  The harder part is therefore the one 
where A'' l= $1 r\ 42 ,  for in that case we need to verify A' l= 43 as well. The 
way we proceed here is by interpreting finite, binary strings in the domain 
of values A' of the model A'. This is not unlike the coding of an interpreter 
for one programming language in another. The interpretation is done by a 
function interpret which is defined inductively on the data structure of finite, 
binary strings (we write E for the empty word): 

Note that interpret(s) is defined inductively on the length of s. This inter- 
pretation is, like the coding above, backwards; for example, the binary word 
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01001 10 gets interpreted as 

Note that 

is just the meaning of f,(e) in A', where s bl b2.. . hl. Using that and the 
fact that A' k $1, we conclude that (interpret(si), interpret(ti)) E pd l  for 
i = 1,2,. .  .,k. Similarly, since 4' I= &, we know that for all (s,t) E psAL1 
we have that (interpret(ssi), interpret(tti)) E p M 1  for i = 1,2,. . . , k. Using 
these two facts, starting with (s,t) = (si1,til), we repeatedly use the latter 
observation to obtain 

Since si,Si2 . . . Sin and ti, ti, . . . ti,, together form a solution of C, they are equal; 
and therefore the elements interpret(si,si2 . . . sin) and interpret(til ti2 . . . tin) are 
the same in A', for interpreting the same thing gets you the same result. 
Hence the pair 

(interpret(si,si2 . . .sin), interpret(ti,ti, . . . ti,,)) E pA1 

verifies 32 P ( z , z )  in A" and thus A' k 43. 

There are two more negative results which we now get quite easily. Let 
us say that a formula 4 is satisJ?able if there is some model A such that 
A! t= 4. This property is not to be taken for granted; the formula 

is clearly unsatisfiable. More interesting is the observation that 6 is unsatisfi- 
able if, and only if, 14 is valid, i.e. holds in all models. This is an immediate 
consequence of the definitional clause 4 k 14 for negation. Since we can't 
compute validity, it follows that we cannot compute satisfiability either. 

The other undecidability result comes from the soundness and complete- 
ness of predicate logic: 

which we do not prove in this text. Since we can't decide validity, we cannot 
decide provability either, on the basis of (2.2). One might reflect on that 
last negative result a bit. It means bad news if one wants to implement 
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perfect theorem provers which can mechanically produce a proof of a given 
formula, or refute it. It means good news, though, if we like the thought that 
machines still need a little bit of human help. Creativity seems to have limits 
if we leave it to machines alone. 

EXERCISES 2.8 
1. Assuming that our proof calculus for predicate logic is sound (see 

exercise 2), show that the following sequents cannot be proved by 
finding for each sequent a model such that all formulas to the 
left of k evaluate to T and the sole formula to the right of !- 
evaluates to F (explain why this guarantees the non-existence of a 
proof) : 

2. To show the soundness of our natural deduction rules for predicate 
logic, it intuitively suffices to show that the conclusion of a proof 
rule is true provided that all its premises are true. What additional 
complication arises due to the presence of variables and quantifiers? 
Can you precisely formalise the necessary induction hypothesis for 
proving soundness? 

* 3. Assuming that our proof calculus for predicate logic is sound (see 
exercise 2), show that the following two sequents cannot be proved 
in predicate logic. Relying on the soundness of our proof calculus, it 
suffices to do the following: for each sequent you need to specify a 
model such that the formula on the left of I- holds whereas the one 
to the right of k doesn't. 

2.6 Bibliographic notes 

Many design decisions have been taken in the development of predicate logic 
in the form known today. The Greeks and the medievals had systems in which 
many of the examples and exercises in this book could be represented, but 
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nothing that we would recognise as predicate logic emerged until the work of 
Gottlob Frege in 1879, printed in [Fre03]. An account of the contributions 
of the many other people involved in the development of logic can be found 
in the first few pages of W. Hodges' chapter in [Hod83]. 

There are many books covering classical logic and its use in computer 
science; we give a few incomplete pointers to the literature. The books 
[SA91], [vD89] and [Gal871 cover more theoretical applications than those in 
this book, including type theory, logic programming, algebraic specification 
and term-rewriting systems. An approach focusing on automatic theorem 
proving is taken by [Fit96]. Books which study the mathematical aspects of 
predicate logic in greater detail, such as completeness of the proof systems 
and incompleteness of first-order arithmetic, include [Ham781 and [Hod83]. 

Most of these books present other proof systems besides natural deduction 
such as axiomatic systems and tableau systems. Although natural deduction 
has the advantages of elegance and simplicity over axiomatic methods, there 
are few expositions of it in logic books aimed at a computer science audience. 
One exception to this is the book [BEKV94], which is the first one to present 
the rules for quantifiers in the form we used here. A natural deduction 
theorem prover called Jape has been developed, in which one can vary the 
set of available rules and specify new ones1. 

A standard reference for computability theory is [BJSO]. A proof for the 
undecidability of the Post correspondence problem can be found in the text 
book [Tay98]. 

The second instance of a Post correspondence problem is taken from 
[Sch92]. A text on the fundamentals of databases systems is [EN94]. 
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