Predicate Calculus - Semantic Tableau (2/2)

Moonzoo Kim CS Dept. KAIST

Formal construction

- Formal construction is explained in two steps
 - 1. Construction rules (α rule, β rule, γ rule for $\forall x$, and δ rule for $\exists y$)
 - These rules might not be systematic, but enough for showing soundness of a semantic tableau. $\forall \mathbf{x} \mid r \mid r(a) \mid \exists \mathbf{x} \mid \delta \mid \delta(a)$

X	γ	γ(a)
	$\forall xA(x)$	A(a)
	$\neg \exists x A(x)$	$\neg A(a)$

X	δ	$\delta(a)$
	$\exists xA(x)$	A(a)
	$\neg \forall x A(x)$	$\neg A(a)$

- 2. Systematic construction rules, which specify the order of applying rules
 - Systematic construction rules can show the completeness of a semantic tableau
- Def 5.25 A literal is a closed atomic formula p(a₁,...,a_k) or the negation of such a formula
 - If a formula has no free variable, it is closed. Therefore, if an atomic formula is closed, all of its arguments are constants.

Formal construction rules (1/2)

Alg 5.26 (Construction of a semantic tableau)

- Input: A formula A of the predicate calculus
- Output: A semantic tableau \mathcal{T} for A
 - Each node of \mathcal{T} will be labeled with a set of formulas.
 - Initially, \mathcal{T} consists of a single node, the root, labeled with {A}
 - All branches are either
 - infinite or
 - finite with
 - leaves marked closed or
 - leaves marked open
 - T is built inductively by choosing an unmarked leaf I labeled with a set of formulas U(I), and applying one of the following rules:

Formal construction rules (2/2)

- If U(I) is a set of literals and γ–formulas which contains a complementary pair of literals {p(a₁,...,a_k), ¬p(a₁,...,a_k)}, mark the leaf closed x
- If U(I) is not a set of literals, <u>choose</u> a formula A in U(I) which is not a literal
 - if A is an α-formula or β-formula, do the same as in propositional calculus
 - if A is a γ–formula (such as ∀x A₁(x)), create a new node I' as a child of I and label I' with U(I') = U(I) ∪ {γ(a)} where a is some constant that appears in U(I) (<u>infinite branch</u>)
 - If no constant exists in U(I), use an arbitrary constant, say a_i
 - Note that the γ -formula remains in U(l').
 - If U(I) consists only of literals and γ-formulas and U(I) does not contain a complementary pair of literals and U(I')=U(I) for all choices of a, then mark the leaf as open O. <u>(finite branch)</u>
 - If the only rule that applies is a γ–rule and the rule produces no new subformulas, then the branch is open.
 - ex. for {∀x p(a,x)}, ({a},{(a,a)},{a}) is a model for it.
 - if A is a δ formula (such as ∃x A₁(x)), create a new node l' as a child of I and label l' with U(l') = (U(I) {A}) ∪ {δ(a)} where a is some constant that does not appear in U(I).

KAIST Intro. to Logic CS402

Soundness

- Thm 5.28 (Soundness) let A be a formula in the predicate calculus and let \mathcal{T} be a tableau for A. If \mathcal{T} closes, then A is unsatisfiable.
 - However, the construction of the tableau is not complete unless it is built systematically.
 - ex. $\forall x \exists y \ p(x,y) \land \forall x(p(x) \land \neg p(x))$
- The proof is by induction on the height h of node n
 - Cases for h=0, and the inductive cases for α , β formulas is the same as the proof in the propositional calculus
 - Case 3: The γ -rule was used. Then
 - $U(n) = U_0 \cup \{ \forall x \ A(x) \}$ and $U(n') = U_0 \cup \{ \forall x \ A(x), \ A(a) \}$
 - Assume that U(n) is satisfiable and let \mathcal{I} be a model for U(n), so that $v_{\mathcal{I}}(A_i) = T$ for all $A_i \in U_0(n)$ and also $v_{\mathcal{I}}(\forall x A(X)) = T$.
 - By Thm 5.15, $v_{\mathcal{I}}(\forall x A(x)) = T$ iff $v_{\sigma_{\mathcal{I}}} = T$ for all assignments $\sigma_{\mathcal{I}}$, in particular for any assignment that assigns the same domain element to x that \mathcal{I} does to a
 - But $v_{\mathcal{I}}(A(a)) = T$ contradicts the inductive hypothesis that U(n') is unsatisfiable
 - Case 4: The δ -rule was used. Then
 - U(n) = U_o ∪ {∃ x A(x)} and U(n') = U_o ∪ {A(a)} for some constant a which does not occur in a formula of U(n)
 - Assume that U(n) is satisfiable and let $\mathcal{I} = (D, \{R_1, \dots, R_n\}, \{d_1, \dots, d_k\})$ be a satisfying interpretation.
 - Then $v_{\mathcal{I}}(\exists xA(x)) = T$, so for the relation R_i assignmed to A and for some $d \in D$, $(d) \in R_i$. Extend \mathcal{I} to the interpretation $\mathcal{I} = (D, \{R_1, \dots, R_n\}, \{d_1, \dots, d_k, d\})$ by assigning d to the constant a.
 - Then $v_{\mathcal{I}}(A(a))=T$, and since $v_{\mathcal{I}}(U_0) = v_{\mathcal{I}}(U_0) = T$, we can conclude that $v_{\mathcal{I}}(U(n'))=T$, contradicting the inductive hypothesis that U(n') is unsatisfiable

Systematic formal construction rules (1/2)

- The aim of the systematic construction is to ensure that
 - 1. rules are eventually applied to all formulas in the label of a node and
 - 2. in the case of universally quantified formulas, that an instance is created for all constants that appears
- Alg 5.29 (Systematic construction of a semantic tableau)
 - Input: A formula A of the predicate calculus
 - Output: A semantic tableau \mathcal{T} for A
 - key idea: to apply α , β , δ , and γ rules in order, to prevent infinite branch due to γ rule from hidding that an branch is closed
 - A semantic tableau for A is a tree T each node of which is labeled by a pair W(n) = (U(n),C(n)), where U(n) = {A₁,...,A_k} is a set of formulas and C(n) = {a₁,...,a_m} is a set of constants appearing in the formulas in U(n)
 - Initially, \mathcal{T} consists of a single node (the root) labeled with ({A}, {a_1, ..., a_m})
 - If A has no constants, choose an arbitrary constant a and label the node with ({A},{a})

Systematic formal construction rules (2/2)

- Inductively applying one of the following rules in the order given
 - If U(I) is a set of literals and γ–formulas which contains a complementary pair of literals {p(a₁,...,a_k), ¬p(a₁,...,a_k)}, mark the leaf closed x
 - 2. If U(I) is not a set of literals, <u>choose</u> a formula A in U(I) which is not a literal
 - if A is an α -formula or β -formula, do the same as in propositional calculus with C(l')=C(l)
 - if A is a δ -formula, create a new node I' as a child of I and label I' with W(I') = $((U(I)-\{A\})\cup \{\delta(a)\}, C(I)\cup \{a\})$ where a is some constant that does not appears in U(I)
 - 3. Let $\{\gamma_1, \dots, \gamma_m\} \subseteq U(I)$ be all the γ -formulas in U(I) and let $C(I) = \{a_1, \dots, a_k\}$. Create a new node I' as a child of I and label I' with
 - $W(I') = (U(I) \cup \bigcup_{i=1..m, j=1..k} \{\gamma_i(a_j)\}, C(I)\}$
 - If U(I) consists only of literals and γ -formulas and U(I) does not contain a complementary pair of literals and U(I') = U(I), then mark the leaf as open O.

Completeness (1/2)

- Thm 5.34 (Completeness) Let A be a valid formula. Then the systematic semantic tableau for ¬A closes
 - Def 5.31 Let U be a set of formulas in the predicate calculus. U is a Hintikka set iff the following conditions hold for all formulas A ∈ U:
 - If A is a closed atomic formula, either $A \notin U$ or $\neg A \notin U$
 - If A is an α -formula, $\alpha 1 \in U$ and $\alpha 2 \in U$
 - If A is a β -formula, $\beta 1 \in U$ or $\beta 2 \in U$
 - If A is a γ -formulas, $\gamma(\alpha) \in U$ for all constants a appearing in formulas in U
 - If A is a δ -formula, $\delta(\alpha) \in U$ for some constant a
 - Thm 5.32 Let b be an open branch of a systematic tableau and U = $U_{n \in b} U(n)$. The U is a Hintikka set.
 - Lem 5.33 (Hintikka's lemma) Let U be a Hintikka set. Then there is a model for U

Completeness (2/2)

Proof of Completeness (Thm5.34)

- Let A be a valid formula and suppose that the systematic tableau for ¬A does not close.
- By Thm 5.32, there is an open branch b s.t. $U = U_{n \in b} U(n)$ is a Hintikka set.
- By Lem 5.33, there is a model *I* for U. But ¬A ∈ U so *I* ⊨ ¬A contradicting the assumption that A is valid

Finite and infinite models

- Def 5.35 A formula of the predicate calculus is pure if it contains no function symbols
- Def 5.36 A set of formulas U has the finite model property iff
 - U is satisfiable iff it is satisfiable in an interpretation whose domain is a finite set.
- Thm 5.37 Let U be a set of pure formulas of the form
 - $\exists x_1 \dots x_k \forall y_1 \dots y_l A(x_1, \dots, x_k, y_1, \dots, y_l)$ where A does not contain any quantifiers.
 - Then, U has the finite model property.
 - During the construction of semantic tableau, the set of constants will be finite
- Thm 5.39 (Lowenhiem-Skolem) If a countable set of formulas is satisfiable then it is satisfiable in a countable domain
 - For example, formulas that describe real numbers also have a countable non-standard model!!!
- Thm 5.40 (Compactness) Let U be a countable set of formulas. If all finite subsets of U are satisfiable then so is U

