# Predicate Calculus - Natural deduction (1/2)

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr



## **Natural deduction**

- Proofs in the natural deduction for predicate logic are similar to those for propositional logic
  - We have new proof rules for dealing with ∀,∃ and with the equality (=) symbol
  - As in the natural deduction for propositional logic, the additional rules for the quantifiers and equality will come in two flavors
    - introduction and elimination rules





### $p \land \neg q \rightarrow r, \ \neg r, \ p \vdash q$

| 1 | $p \wedge \neg q \rightarrow r$ | premise    |
|---|---------------------------------|------------|
| 2 | $\neg r$                        | premise    |
| 3 | р                               | premise    |
| 4 | $\neg q$                        | assumption |
| 5 | $p \wedge \neg q$               | ∧i 3,4     |
| 6 | r                               | →e 1,5     |
| 7 | L                               | ¬e 6, 2    |
| 8 | $\neg \neg q$                   | ¬i 4—7     |
| 9 | q                               |            |



1 
$$p \rightarrow q$$
 premise  
2  $\neg p \lor p$  LEM  
3  $\neg p$  assumption  
4  $\neg p \lor q$   $\lor i_1 3$   
5  $p$  assumption  
6  $q \rightarrow e 1, 5$   
7  $\neg p \lor q$   $\lor i_2 6$   
8  $\neg p \lor q$   $\lor e 2, 3-4, 5-7$ 



 $p \to q \vdash \neg p \lor q$ 

### **Example 3 (Law of Excluded Middle)**

1  

$$\neg(\phi \lor \neg \phi) \quad \text{assumption}$$
2  

$$\phi \quad \text{assumption}$$
3  

$$\phi \lor \neg \phi \quad \forall i_1 \ 2$$
4  

$$\bot \quad \neg e \ 3, 1$$
5  

$$\neg \phi \quad \neg i \ 2-4$$
6  

$$\phi \lor \neg \phi \quad \forall i_2 \ 5$$
7  

$$\bot \quad \neg e \ 6, 1$$
8  

$$\neg \neg(\phi \lor \neg \phi) \quad \neg i \ 1-7$$
9  

$$\phi \lor \neg \phi \quad \neg \neg e \ 8$$



 $\overline{\phi \vee \neg \phi}$  Lem

### The proof rules for $\forall$ and $\exists$



 $\frac{\forall x\phi}{\phi[t/x]} \forall xe$ 



Intro. to Logic CS402

KAIST



# ∀x e, ∀x i

#### ► ∀x e

- If ∀x φ is true, then you could replace the x in φ by any term t
  - t must be free for x in  $\phi$
- Ex. Let  $\phi = \exists y (x < y)$ 
  - Suppose that we replace x with y, i.e., φ[y/x] = ∃ y (y < y)</p>
  - very different meaning!
- ► ∀x i

Intro. to Logic

**CS402** 

KAIST

- If, starting with a 'fresh' variable x<sub>0</sub>, you are able to prove some formula φ[x<sub>0</sub>/x] with x<sub>0</sub> in it, then (because x<sub>0</sub> is fresh) you can derive ∀x φ
- x<sub>o</sub> does not occur outside the box





### ■ $\forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$



| 2 | ∀ x P(x)                         | Premise         |
|---|----------------------------------|-----------------|
| 3 | $x_0 \ P(x_0)  ightarrow Q(x_0)$ | ∀ x e 1         |
| 4 | P(x <sub>0</sub> )               | ∀ x e 2         |
| 5 | Q(x <sub>0</sub> )               | ightarrow e 3,4 |
| 6 | ∀x Q(x)                          | ∀ x i 3-5       |



# ∃x i, ∃x e

### ■ ∃xi

- It simply says that we can deduce ∃ x φ whenever we have φ[t/x] for some term t
  - t must be free for x in  $\phi$

### $\exists x \ e$

- We know ∃ x φ is true, so φ is true for at least one value of x
  - So we do a case analysis over all those possible values, writing x\_0 as a generic value representing them all

$$\frac{\phi \left[ t \ / \ x \right]}{\exists x \phi} \exists x i$$

$$\exists x \phi \begin{bmatrix} x_0 & \phi[x_0/x] \\ \vdots \\ & \chi \end{bmatrix} \exists xe$$





 $\forall x (P(x) \rightarrow Q(x))$  Premise

| 2 |                       | ∃x P(x)                     | Premise        |
|---|-----------------------|-----------------------------|----------------|
| 3 | <b>X</b> <sub>0</sub> | P(x <sub>0</sub> )          | Assumption     |
| 4 |                       | $P(x_0) \rightarrow Q(x_0)$ | ∀ <b>x e 1</b> |
| 5 |                       | Q(x <sub>0</sub> )          | →e 4,3         |
| 6 |                       | ∃x Q(x)                     | ∃x i 5         |
| 7 |                       | ∃x Q(x)                     | ∃x e 2,3-6     |

