Predicate Calculus
 - Natural deduction (1/2)

Moonzoo Kim
CS Dept. KAIST
moonzoo@cs.kaist.ac.kr

Natural deduction

- Proofs in the natural deduction for predicate logic are similar to those for propositional logic
- We have new proof rules for dealing with \forall, \exists and with the equality (=) symbol
- As in the natural deduction for propositional logic, the additional rules for the quantifiers and equality will come in two flavors
- introduction and elimination rules

Example 1

$$
p \wedge \neg q \rightarrow r, \neg r, p \vdash q
$$

1	$p \wedge \neg q \rightarrow r$	premise
2	$\neg r$	premise
3	p	premise
4	$\neg q$	assumption
5	$p \wedge \neg q$	$\wedge \mathrm{i} 3,4$
6	r	$\rightarrow \mathrm{e} 1,5$
7	\perp	$\neg \mathrm{e} 6,2$
8	$\neg \neg q$	$\neg \mathrm{i} 4-7$
9	q	$\neg \neg \mathrm{e} 8$

$$
p \rightarrow q \vdash \neg p \vee q
$$

Example 2

1	$p \rightarrow q$	premise
2	$\neg p \vee p$	LEM
3	$\neg p$	assumption
4	$\neg p \vee q$	$\vee \mathrm{i}_{1} 3$
5	p	assumption
6	q	$\rightarrow \mathrm{e} 1,5$
7	$\neg p \vee q$	$\mathrm{Vi}_{2} 6$
8	$\neg p \vee q$	Ve 2,3-4, 5

Example 3 (Law of Excluded Middle)

$\phi \vee \neg \phi$	12	$\neg(\phi \vee \neg \phi)$	assumption
		ϕ	assumption
	3	$\phi \vee \neg \phi$	$\vee \mathrm{i}_{1} 2$
	4	\perp	ᄀe 3,1
	5	$\neg \phi$	$\neg \mathrm{i} 2-4$
	6	$\phi \vee \neg \phi$	$\checkmark \mathrm{i}_{2} 5$
	7	\perp	ᄀe 6,1
	8	$\neg \neg(\phi \vee \neg \phi)$	$\neg \mathrm{L} 1-7$
	9	$\phi \vee \neg \phi$	\neg ¢ 8

The proof rules for \forall and \exists

$\underline{\phi[t / x]} \exists x i$ $\exists x \phi$

$\forall x e, \forall x i$

- $\forall x e$
- If $\forall x \phi$ is true, then you could replace the x in ϕ by any term t
- t must be free for x in ϕ
- Ex. Let $\phi=\exists \mathrm{y}(\mathrm{x}<\mathrm{y})$
- Suppose that we replace x with y, i.e., $\phi[y / x]=\exists y(y<y)$
$\forall x \phi$
$\phi[t / x]$

Example

- $\quad \forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$

$\exists \mathrm{x} \mathbf{i}, \exists \mathrm{x} \mathbf{e}$

- $\exists x i$
- It simply says that we can deduce $\exists \mathrm{x} \phi$ whenever we have $\phi[t / x]$ for some term t
- t must be free for x in ϕ

$$
\frac{\phi[t / x]}{\exists x \phi} \exists x i
$$

- $\exists x e$
- We know $\exists \mathrm{x} \phi$ is true, so ϕ is true for at least one value of x
- So we do a case analysis over all those possible values, writing $\mathrm{x} _0$ as a generic value representing them all

Example

- $\quad \forall x(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x \mathrm{Q}(x)$
(1) $\quad \forall \mathrm{x}(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})) \quad$ Premise

