
Intro. to Logic
CS402

1

 Propositional Calculus

- Semantics (1/3)
Moonzoo Kim

CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Intro. to Logic
CS402

2

Overview

 2.1 Boolean operators

 2.2 Propositional formulas

 2.3 Interpretations

Intro. to Logic
CS402

3

Boolean Operators

 A proposition (p, q, r, …) in a propositional calculus can
get a boolean value (i.e. true or false)

 Propositional formula can be built by combining smaller
formula with boolean operators such as :, /\, \/

 How many different unary boolean operators exist?

 How many different binary boolean operators exist?

p o1 o2 o3 o4 …

T T T F F

F T F T F

Binary Boolean Operators

Intro. to Logic
CS402

4

Intro. to Logic
CS402

5

Boolean Operators

op name symbol op name symbol

o2 disjunction \/ o15

nor #

o8 conjunction /\ o9 nand "

o5 implication ! o12

o3 reverse

implication

Ã o14

o7 equivalence $ o10 exclusive or ©

Intro. to Logic
CS402

6

 The first five binary operators can all be defined in terms

of any one of them plus negation

 Nand or nor by itself is sufficient to define all other

operators.

 The choice of an interesting set of operators depends on

the application

 Mathematics is generally interested in one-way logical deduction

(given a set of axioms, what do they imply?).

 So implication together with negation are chosen as the basic

operators

Boolean Operators

Intro. to Logic
CS402

7

Propositional formulas

 Def 2.1 A formula fml 2F in the propositional calculus is a word that
can be derived from the following grammar, starting from the initial
non-terminal fml

1. fml ::= p for any p 2 P

2. fml ::= : fml

3. fml ::=fml op fml where op 2 { \/, /\, ! , Ã , $, #, ", © }

 Each derivation of a formula from a grammar can be represented by a
derivation tree that displays the application of the grammar rules to the
non-terminals

 non-terminals: symbols that occur on the left-hand side of a rule

 terminal: symbols that occur on only the right-hand side of a rule

 From the derivation tree we can obtain a formation tree

 by replacing an fml non-terminal by the child that is an operator or an atom

Intro. to Logic
CS402

8

Ambiguous representation of formulas

Intro. to Logic
CS402

9

Formulas created by a Polish notation

 There will be no ambiguity if the linear
sequence of symbols is created by a
preorder traversal of the formal tree

 Visit the root, visit the left subtree, visit
the right subtree

 $! p q ! :p :q

 ! p $ q : ! :p :q

 Polish notation is used in the
internal representation of an
expression in a computer
 advantage: the expression can be

executed in the linear order the
symbols appear

 If we rewrite the first
formula from backwards

 q: p : ! qp ! $

 can be directly compiled
to the following
sequence of instructions

Load q

Negate

Load p

Negate

Imply

load q

Load p

Imply

Equiv

Intro. to Logic
CS402

10

Other ways to remove ambiguity

 Use parenthesis

 Define precedence and associativity

 The precedence order

 : > /\ > " > \/ > # > ! > $

 Operators are assumed to associate to the right

 a ! b ! c means (a ! (b ! c))

 a\/ b\/ c means (a\/(b\/c))

 Some textbook considers /\, \/, $ as associate to the left. So be

careful.

Intro. to Logic
CS402

11

Structural induction

 Theorem 2.5. To show property(A) for all formulas A
2 F, it suffices to show:

 base case:

 property(p) for all atoms p 2 P

 induction step:

 Assuming property(A), the property(:A) holds

 Assuming property(A1) and property(A2), then property(A1 op

A2) hold, for each of the binary operators

 Example

 Prove that every propositional formula can be equivalently

expressed using only "

Intro. to Logic
CS402

12

Interpretations

 Def 2.6 An assignment º is a function º:P ! {T,F}

 that is º assigns one of the truth values T or F to every atom

 From now on we use two new syntax terms, “true” and “false”

 fml ::= true | false where º(true) = T and º(false) = F

 note that we need to distinguish “true” from T and “false” from F

 “true” and “false” are syntactic terms in propositional logic, but T and F

are truth values

 Note that an assignment º can be extended to a function

º:F ! {T,F}, mapping formulas to truth values by the

inductive definition.

 º is called an interpretation

Intro. to Logic
CS402

13

Interpretations

 Inductive truth value calculation for given formula A

 Theorem 2.9 An assignment can be extended to exactly one interpretation

 Theorem 2.10 Let P’ = {pi1, …,pin} µ P be the atoms appearing in A 2 F.

Let º1 and º2 be assignments that agree on P’, that is º1(pik) = º2(pik) for all

pik2 P’. Then the interpretations agree on A, that is º1(A) = º2(A).

Intro. to Logic
CS402

14

Examples

