Propositional Calculus - Semantics (1/3)

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Overview

- 2.1 Boolean operators
- 2.2 Propositional formulas
- 2.3 Interpretations

Boolean Operators

- A proposition (p, q, r, ...) in a propositional calculus can get a boolean value (i.e. true or false)
- Propositional formula can be built by combining smaller formula with boolean operators such as ¬, Λ, V
- How many different unary boolean operators exist?

How many different binary boolean operators exist?

Binary Boolean Operators

x_1	<i>x</i> ₂	0 ₁	0 ₂	03	0 ₄	05	• ₆	07	08
T			T	T	T	T	T	T	T
T	F	T	T	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	

x_1	<i>x</i> ₂	09	o ₁₀	0 ₁₁	• ₁₂	0 ₁₃	0 ₁₄	°15	0 ₁₆
T		F	F	F	F	F	F	F	F
T	F	T	T ⁺	T		F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F

Boolean Operators

ор	name	symbol	ор	name	symbol
0 ₂	disjunction	V	0 ₁₅	nor	\downarrow
0 ₈	conjunction	٨	0 9	nand	1
0 ₅	implication	\rightarrow	0 ₁₂		
0 ₃	reverse implication	\leftarrow	0 ₁₄		
0 ₇	equivalence	\leftrightarrow	0 ₁₀	exclusive or	\oplus

Boolean Operators

- The first five binary operators can all be defined in terms of any one of them plus negation
- Nand or nor by itself is sufficient to define all other operators.
- The choice of an interesting set of operators depends on the application
 - Mathematics is generally interested in one-way logical deduction (given a set of axioms, what do they imply?).
 - So implication together with negation are chosen as the basic operators

Propositional formulas

- Def 2.1 A formula $fml \in \mathcal{F}$ in the propositional calculus is a word that can be derived from the following grammar, starting from the initial non-terminal *fml*
 - 1. *fml* ::= p for any $p \in \mathcal{P}$
 - 2. $fml ::= \neg fml$
 - 3. *fml* ::=*fml* op *fml* where $op \in \{ V, \Lambda, \rightarrow, \leftarrow, \leftrightarrow, \downarrow, \uparrow, \oplus \}$
- Each derivation of a formula from a grammar can be represented by a derivation tree that displays the application of the grammar rules to the non-terminals
 - non-terminals: symbols that occur on the left-hand side of a rule
 - terminal: symbols that occur on only the right-hand side of a rule
- From the derivation tree we can obtain a formation tree
 - by replacing an fml non-terminal by the child that is an operator or an atom

Ambiguous representation of formulas

Figure 2.3 Formation tree for $p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$

Figure 2.4 Another formation tree

Formulas created by a Polish notation

- There will be no ambiguity if the linear sequence of symbols is created by a preorder traversal of the formal tree
 - Visit the root, visit the left subtree, visit the right subtree
- $\bullet \to \mathsf{p} \mathsf{q} \to \neg \mathsf{p} \neg \mathsf{q}$
- $\bullet \quad \rightarrow \mathsf{p} \leftrightarrow \mathsf{q} \neg \rightarrow \neg \mathsf{p} \neg \mathsf{q}$
- Polish notation is used in the internal representation of an expression in a computer
 - advantage: the expression can be executed in the linear order the symbols appear

- If we rewrite the first formula from backwards
 - $q \neg p \neg \rightarrow qp \rightarrow \leftrightarrow$
 - can be directly compiled to the following sequence of instructions

Load q Negate Load p Negate Imply Ioad q Load p Imply Equiv

Other ways to remove ambiguity

- Use parenthesis
- Define precedence and associativity
 - The precedence order
 - $\blacksquare \neg > \land > \uparrow > \lor > \downarrow > \rightarrow > \leftrightarrow$
 - Operators are assumed to associate to the right
 - \blacksquare a \rightarrow b \rightarrow c means (a \rightarrow (b \rightarrow c))
 - aV bV c means (aV(bVc))
 - Some textbook considers ∧, ∨, ↔ as associate to the left. So be careful.

Structural induction

- Theorem 2.5. To show property(A) for all formulas A $\in \mathcal{F}$, it suffices to show:
 - base case:
 - property(*p*) for all atoms $p \in P$
 - induction step:
 - Assuming property(A), the property(\neg A) holds
 - Assuming property(A₁) and property(A₂), then property(A₁ op A₂) hold, for each of the binary operators

Example

Prove that every propositional formula can be equivalently expressed using only

Interpretations

• Def 2.6 An assignment ν is a function $\nu: \mathcal{P} \to \{\mathsf{T},\mathsf{F}\}$

- that is ν assigns one of the truth values T or F to every atom
- From now on we use two new syntax terms, "true" and "false"

• fml ::= true | false where ν (true) = T and ν (false) = F

- note that we need to distinguish "true" from T and "false" from F
 - "true" and "false" are syntactic terms in propositional logic, but T and F are truth values

Note that an assignment ν can be extended to a function ν: F → {T,F}, mapping formulas to truth values by the inductive definition.

• ν is called an interpretation

Interpretations

Inductive truth value calculation for given formula A

Α	$v(A_1)$	$v(A_2)$	$\nu(A)$
$\neg A_1$	Т		F
$\neg A_1$	F		
$A_1 \lor A_2$	F	F	F
$A_1 \lor A_2$	other		
$A_1 \wedge A_2$	Т	T	T
$A_1 \wedge A_2$	other	F	
$A_1 \rightarrow A_2$	Т	F	F
$A_1 \rightarrow A_2$	other	T	

A	$\nu(A_1)$	$v(A_2)$	v(A)
$A_1 \uparrow A_2$	T	Т	F
$A_1 \uparrow A_2$	other	Т	
$A_1 \downarrow A_2$	F F		T
$A_1 \downarrow A_2$	other	F	
$A_1 \leftrightarrow A_2$	$\nu(A_1) =$	T	
$A_1 \leftrightarrow A_2$	$v(A_1) =$	F	
$A_1 \oplus A_2$	$v(A_1)$	T	
$A_1 \oplus A_2$	$v(A_1) =$	$= v(A_2)$	F

Figure 2.5 Evaluation of truth values of formulas

- Theorem 2.9 An assignment can be extended to exactly one interpretation
- Theorem 2.10 Let $\mathcal{P}' = \{p_{i1}, ..., p_{in}\} \subseteq \mathcal{P}$ be the atoms appearing in $A \in \mathcal{F}$. Let ν_1 and ν_2 be assignments that agree on \mathcal{P}' , that is $\nu_1(p_{ik}) = \nu_2(p_{ik})$ for all $p_{ik} \in \mathcal{P}'$. Then the interpretations agree on A, that is $\nu_1(A) = \nu_2(A)$.

Examples

Example 2.7 Let $A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$, and let v the assignment such that v(p) = F and v(q) = T, and $v(p_i) = T$ for all other $p_i \in \mathcal{P}$. Extend v to an interpretation. The truth value of A can be calculated inductively using Figure 2.5:

$$\begin{aligned} v(p \to q) &= T \\ v(\neg q) &= F \\ v(\neg p) &= T \\ v(\neg q \to \neg p) &= T \\ v((p \to q) \leftrightarrow (\neg q \to \neg p)) &= T. \end{aligned}$$

Example 2.8 $v(p \rightarrow (q \rightarrow p)) = T$ but $v((p \rightarrow q) \rightarrow p) = F$ under the above interpretation, emphasizing that the linear string $p \rightarrow q \rightarrow p$ is ambiguous.

Example 2.12 Let $S = \{p \rightarrow q, p, p \lor s \leftrightarrow s \land q\}$, and let ν be the assignment given by $\nu(p) = T$, $\nu(q) = F$, $\nu(r) = T$, $\nu(s) = T$. ν is an interpretation for S and assigns the truth values

