Propositional Calculus
 - Semantics (1/3)

Moonzoo Kim
CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Overview

- 2.1 Boolean operators
- 2.2 Propositional formulas
- 2.3 Interpretations

Boolean Operators

- A proposition (p, q, r, \ldots) in a propositional calculus can get a boolean value (i.e. true or false)
- Propositional formula can be built by combining smaller formula with boolean operators such as $\neg, \Lambda, \$
- How many different unary boolean operators exist?

p	o_{1}	o_{2}	o_{3}	o_{4}	\ldots
T	T	T	F	F	
F	T	F	T	F	

- How many different binary boolean operators exist?

Binary Boolean Operators

x_{1}	x_{2}	\circ_{1}	\circ_{2}	\circ_{3}	\circ_{4}	\circ_{5}	\circ_{6}	\circ_{7}	\circ_{8}
T									
T	F	T	T	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F

x_{1}	x_{2}	\circ_{9}	\circ_{10}	\circ_{11}	\circ_{12}	\circ_{13}	\circ_{14}	\circ_{15}	\circ_{16}
T	T	F							
T	F	T	T	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F

Boolean Operators

op	name	symbol	op	name	symbol
o_{2}	disjunction	\vee	o_{15}	nor	\downarrow
o_{8}	conjunction	Λ	o_{9}	nand	\uparrow
o_{5}	implication	\rightarrow	o_{12}		
o_{3}	reverse implication	\leftarrow	o_{14}		
o_{7}	equivalence	\leftrightarrow	o_{10}	exclusive or	\oplus

Boolean Operators

- The first five binary operators can all be defined in terms of any one of them plus negation
- Nand or nor by itself is sufficient to define all other operators.
- The choice of an interesting set of operators depends on the application
- Mathematics is generally interested in one-way logical deduction (given a set of axioms, what do they imply?).
- So implication together with negation are chosen as the basic operators

Propositional formulas

Def 2.1 A formula $f m l \in \mathcal{F}$ in the propositional calculus is a word that can be derived from the following grammar, starting from the initial non-terminal fml

1. $\quad f m l::=p$ for any $p \in \mathcal{P}$
2. $f m l::=\neg f m l$
3. $f m /::=f m / ~ o p ~ f m / ~ w h e r e ~ o p ~ \in\{V, \Lambda, \rightarrow, \leftarrow, \leftrightarrow, \downarrow, \uparrow, \oplus\}$

- Each derivation of a formula from a grammar can be represented by a derivation tree that displays the application of the grammar rules to the non-terminals
- non-terminals: symbols that occur on the left-hand side of a rule
- terminal: symbols that occur on only the right-hand side of a rule

From the derivation tree we can obtain a formation tree

- by replacing an fml non-terminal by the child that is an operator or an atom

Ambiguous representation of formulas

Figure 2.3 Formation tree for $p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$
Figure 2.4 Another formation tree

Formulas created by a Polish notation

- There will be no ambiguity if the linear sequence of symbols is created by a preorder traversal of the formal tree
- Visit the root, visit the left subtree, visit the right subtree
- $\leftrightarrow \rightarrow \mathrm{pq} \rightarrow \neg \mathrm{p} \neg \mathrm{q}$
- $\rightarrow \mathrm{p} \leftrightarrow \mathrm{q} \neg \rightarrow \neg \mathrm{p} \neg \mathrm{q}$
- Polish notation is used in the internal representation of an expression in a computer
- advantage: the expression can be executed in the linear order the symbols appear
- If we rewrite the first formula from backwards
- $q \neg p \neg \rightarrow q p \rightarrow \leftrightarrow$
- can be directly compiled to the following sequence of instructions
Load q
Negate
Load p
Negate
Imply
load q
Load p
Imply
Equiv

Other ways to remove ambiguity

- Use parenthesis
- Define precedence and associativity
- The precedence order
- $\neg>\wedge>\uparrow>\vee>\downarrow>\rightarrow>\leftrightarrow$
- Operators are assumed to associate to the right
$\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}$ means $(\mathrm{a} \rightarrow(\mathrm{b} \rightarrow \mathrm{c}))$
$a \mathrm{a} V \mathrm{~b} V \mathrm{c}$ means $(\mathrm{a} V(\mathrm{~b} V \mathrm{c}))$
- Some textbook considers $\Lambda, \vee, \leftrightarrow$ as associate to the left. So be careful.

Structural induction

- Theorem 2.5. To show property(A) for all formulas A $\in \mathcal{F}$, it suffices to show:
- base case:
$\operatorname{property}(p)$ for all atoms $p \in \mathcal{P}$
- induction step:

Assuming property (A), the property $(\neg A)$ holds
Assuming property $\left(A_{1}\right)$ and property $\left(A_{2}\right)$, then property $\left(A_{1}\right.$ op A_{2}) hold, for each of the binary operators

- Example
- Prove that every propositional formula can be equivalently expressed using only \uparrow

Interpretations

- Def 2.6 An assignment ν is a function $\nu: \mathcal{P} \rightarrow\{T, F\}$
- that is ν assigns one of the truth values T or F to every atom
- From now on we use two new syntax terms, "true" and "false"
- fml $::=$ true | false where $\nu($ true $)=\mathrm{T}$ and ν (false) $=\mathrm{F}$
note that we need to distinguish "true" from T and "false" from F
- "true" and "false" are syntactic terms in propositional logic, but T and F are truth values
- Note that an assignment ν can be extended to a function $\nu: \mathcal{F} \rightarrow\{\mathrm{T}, \mathrm{F}\}$, mapping formulas to truth values by the inductive definition.
- ν is called an interpretation

Interpretations

- Inductive truth value calculation for given formula A

A	$v\left(A_{1}\right)$	$v\left(A_{2}\right)$	$v(A)$
$\neg A_{1}$	T		F
$\neg A_{1}$	F		T
$A_{1} \vee A_{2}$	F	F	F
$A_{1} \vee A_{2}$	otherwise		T
$A_{1} \wedge A_{2}$	T		T
$A_{1} \wedge A_{2}$	otherwise		T
$A_{1} \rightarrow A_{2}$	T		F
$A_{1} \rightarrow A_{2}$	otherwise		F

A	$v\left(A_{1}\right)$	$v\left(A_{2}\right)$	$v(A)$
$A_{1} \uparrow A_{2}$	T		T
$A_{1} \uparrow A_{2}$	otherwise		T
$A_{1} \downarrow A_{2}$	F		F
$A_{1} \downarrow A_{2}$	otherwise		F
$A_{1} \leftrightarrow A_{2}$	$v\left(A_{1}\right)=v\left(A_{2}\right)$		T
$A_{1} \leftrightarrow A_{2}$	$v\left(A_{1}\right) \neq v\left(A_{2}\right)$		F
$A_{1} \oplus A_{2}$	$v\left(A_{1}\right) \neq v\left(A_{2}\right)$		T
$A_{1} \oplus A_{2}$	$v\left(A_{1}\right)=v\left(A_{2}\right)$		F

Figure 2.5 Evaluation of truth values of formulas

- Theorem 2.9 An assignment can be extended to exactly one interpretation
- Theorem 2.10 Let $\mathcal{P}^{\prime}=\left\{\mathrm{p}_{\mathrm{i} 1}, \ldots, \mathrm{p}_{\mathrm{in}}\right\} \subseteq \mathcal{P}$ be the atoms appearing in $\mathrm{A} \in \mathcal{F}$. Let ν_{1} and ν_{2} be assignments that agree on \mathcal{P}^{\prime}, that is $\nu_{1}\left(\mathrm{p}_{\mathrm{ik}}\right)=\nu_{2}\left(\mathrm{p}_{\mathrm{ik}}\right)$ for all $\mathrm{p}_{\mathrm{ik}} \in \mathcal{P}^{\prime}$. Then the interpretations agree on A , that is $\nu_{1}(\mathrm{~A})=\nu_{2}(\mathrm{~A})$.

Examples

Example 27. Let $A=(p \rightarrow q) \leftrightarrow(\neg q \rightarrow \neg p)$, and let v the assignment such that $v(p)=$ F and $v(q)=T$, and $v\left(p_{i}\right)=T$ for all other $p_{i} \in \mathcal{P}$. Extend v to an interpretation. The truth value of A can be calculated inductively using Figure 2.5:

$$
\begin{aligned}
& v(p \rightarrow q)=T \\
& v(\neg q)=F \\
& v(\neg p)=T \\
& v(\neg q \rightarrow \neg p)=T \\
& v((p \rightarrow q) \leftrightarrow(\neg q \rightarrow \neg p))=T .
\end{aligned}
$$

Example $2.8 v(p \rightarrow(q \rightarrow p))=T$ but $v((p \rightarrow q) \rightarrow p)=F$ under the above interpretation, emphasizing that the linear string $p \rightarrow q \rightarrow p$ is ambiguous.

Example 2.12 Let $S=\{p \rightarrow q, p, p \vee s \leftrightarrow s \wedge q\}$, and let v be the assignment given by $v(p)=T, v(q)=F, v(r)=T, v(s)=T . v$ is an interpretation for S and assigns the truth values

