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Overview 

 2.1 Boolean operators 

 2.2 Propositional formulas 

 2.3 Interpretations 
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Boolean Operators 

 A proposition (p, q, r, …) in a propositional calculus can 
get a boolean value (i.e. true or false) 

 Propositional formula can be built by combining smaller 
formula with boolean operators such as :, /\, \/ 

 How many different unary boolean operators exist? 

 

 

 

 

 

 How many different binary boolean operators exist? 

 

p o1 o2 o3 o4 … 

T T T F F 

F T F T F 



Binary Boolean Operators 
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Boolean Operators 

op name symbol op name symbol 

o2 disjunction \/ o15 

 

nor # 

o8 conjunction /\ o9 nand " 

o5 implication ! o12 

o3 reverse 

implication 

Ã  o14 

o7 equivalence $ o10 exclusive or ©  
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 The first five binary operators can all be defined in terms 

of any one of them plus negation 

 Nand or nor by itself is sufficient to define all other 

operators. 

 The choice of an interesting set of operators depends on 

the application 

 Mathematics is generally interested in one-way logical deduction 

(given a set of axioms, what do they imply?). 

 So implication together with negation are chosen as the basic 

operators  

Boolean Operators 
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Propositional formulas 

 Def 2.1 A formula fml 2F  in the propositional calculus is a word that 
can be derived from the following grammar, starting from the initial 
non-terminal fml 

1. fml ::= p for any p 2 P 

2. fml ::= : fml 

3. fml ::=fml op fml where op 2 { \/, /\, ! , Ã , $, #, ", ©  } 

 Each derivation of a formula from a grammar can be represented by a 
derivation tree that displays the application of the grammar rules to the 
non-terminals 

 non-terminals: symbols that occur on the left-hand side of a rule 

 terminal: symbols that occur on only the right-hand side of a rule 

 From the derivation tree we can obtain a formation tree 

 by replacing an fml non-terminal by the child that is an operator or an atom 
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Ambiguous representation of formulas 
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Formulas created by a Polish notation  

 There will be no ambiguity if the linear 
sequence of symbols is created by a 
preorder traversal of the formal tree 

 Visit the root, visit the left subtree, visit 
the right subtree 

 $ ! p q ! :p :q 

 ! p $ q : ! :p :q 

 Polish notation is used in the 
internal representation of an 
expression in a computer 
 advantage: the expression can be 

executed in the linear order the 
symbols appear  

 

 If we rewrite the first 
formula from backwards 

 q: p : ! qp ! $  

 can be directly compiled 
to the following 
sequence of instructions 

Load q 

Negate 

Load p 

Negate 

Imply 

load q 

Load p 

Imply 

Equiv 
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Other ways to remove ambiguity 

 Use parenthesis 

 Define precedence and associativity 

 The precedence order 

  : > /\ > " > \/ > # > ! > $ 

 Operators are assumed to associate to the right 

 a ! b ! c  means (a ! (b ! c)) 

 a\/ b\/ c means (a\/(b\/c)) 

 Some textbook considers /\, \/, $ as associate to the left.  So be 

careful. 
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Structural induction 

 Theorem 2.5. To show property(A) for all formulas A 
2 F, it suffices to show: 

 base case:  

 property(p) for all atoms p 2 P 

 induction step: 

 Assuming property(A), the property(:A) holds 

 Assuming property(A1) and property(A2), then property(A1 op 

A2) hold, for each of the binary operators 

 Example 

 Prove that every propositional formula can be equivalently 

expressed using only " 
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Interpretations 

 Def 2.6 An assignment º is a function º:P ! {T,F} 

 that is º assigns one of the truth values T or F to every atom 

 From now on we use two new syntax terms, “true” and “false” 

 fml ::= true | false where º(true) = T and º(false) = F 

 note that we need to distinguish “true” from T and “false” from F 

 “true” and “false” are syntactic terms in propositional logic, but T and F 

are truth values 

 Note that an assignment º can be extended to a function 

º:F ! {T,F}, mapping formulas to truth values by the 

inductive definition.  

 º is called an interpretation 
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Interpretations 

 Inductive truth value calculation for given formula A  

 Theorem 2.9 An assignment can be extended to exactly one interpretation 

 Theorem 2.10 Let P’ = {pi1, …,pin} µ  P be the atoms appearing in A 2 F.  

Let º1 and º2 be assignments that agree on P’, that is º1(pik) = º2(pik) for all 

pik2 P’. Then the interpretations agree on A, that is º1(A) = º2(A). 
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Examples 


