Propositional Calculus - Propositional Normal Forms

Moonzoo Kim CS Dept., KAIST

moonzoo@cs.kaist.ac.kr

Overview

- Logic in Computer Science 2nd ed (by M.Huth and M.Ryan)
 - 1.5.2 Conjunctive normal forms and validity
 - 1.5.3 Horn clauses and satisfiability

Normal Forms

- Advantages of normal forms
 - A mechanical tool can handle a formula of a normal form easier
 - There are special algorithms to solve satisfiability of a formula very efficiently if the formula is written in some normal form.
- We will cover two famous normal forms
 - Conjunctive normal form (CNF) and Horn clauses

Conjunctive Normal Forms and validity

- Any formula can be transformed into an equivalent formula in CNF
 - There exists a deterministic polynomial algorithm to convert a propositional formula into CNF
 - Structural induction over the formula φ.
 - **Ex.** Translate the formula ϕ into CNF ϕ '

Translation to CNF

- We take 3 steps
 - 1. Transform ϕ into implication-free formula ϕ_1
 - 2. Transform implication-free ϕ_{1} into NNF ϕ_{2}
 - 3. Transform implication-free and NNF ϕ_2 into CNF ψ
- This algorithm, called CNF, should satisfy all of the following requirements
 - CNF terminates for all formulas of propositional logic as input.
 - 2. For each such input, CNF outputs an equivalent formula.
 - 3. All output computed by CNF is in CNF.

Preprocessing Procedures

- IMPL_FREE
 - lies in the de Morgan rules.
 - translates away all implications in ϕ by replacing all subformulas of the form $\phi \rightarrow \psi$ by $\neg \phi \lor \psi$
- NNF (Negation Normal Form)
 - formula that contains only negations of atoms.
 - \blacksquare ex. p $\land \neg$ q, but not \neg (p \land q)

IMPL_FREE function

```
function IMPL_FREE(φ)
   /* precondition: \( \phi \) propositional formula */
   /* postcondition : \( \phi \) implication free */
begin function
   case
           ♦ is a literal : return ♦
          \phi is \phi_1 \rightarrow \phi_2: return (\neg \text{IMPL\_FREE} (\phi_1) \vee IMPL_FREE (\phi_2))
          \phi is \neg \phi_1: return (\neg IMPL\_FREE(\phi_1))
          \phi is \phi_1 op \phi_2: return (IMPL_FREE(\phi_1) op IMPL_FREE(\phi_2))
   where op is a binary logical operator except \rightarrow
   end case
end function
```


NNF function

```
function NNF(\phi)
   /* precondition: \phi implication free */
   /* postcondition : NNF(\phi) computes a NNF for \phi */
begin function
   case
           \phi is \neg\neg \phi_1: return NNF(\phi_1)
           \phi is \phi_1 \land \phi_2: return NNF(\phi_1) \land NNF(\phi_2)
           \phi is \phi_1 \vee \phi_2: return NNF(\phi_1) \vee NNF(\phi_2)
           \phi is \neg(\phi_1 \land \phi_2): return NNF(\neg\phi_1 \lor \neg\phi_2)
           \phi is \neg(\phi_1 \lor \phi_2): return NNF(\neg\phi_1 \land \neg\phi_2)
   end case
end function
```


CNF function

```
function CNF(\phi)
   /* precondition: \( \phi \) implication free and in NNF */
   /* postcondition:CNF(\phi) computes an equivalent CNF for \phi */
begin function
   case
          ♦ is a literal : return ♦
          \phi is \phi_1 \land \phi_2: return CNF(\phi_1) \land CNF(\phi_2)
          \phi is \phi_1 \vee \phi_2: return DISTR(CNF(\phi_1),CNF(\phi_2))
   end case
end function
```

DISTR function

```
/* ex. (\eta_{11} \wedge \eta_{12}) \vee (\eta_{21} \wedge \eta_{22}) \equiv (\eta_{11} \vee (\eta_{21} \wedge \eta_{22})) \wedge (\eta_{12} \vee (\eta_{21} \wedge \eta_{22})) */
function DISTR(\eta_1, \eta_2)
    /* precondition : \eta_1 and \eta_2 are in CNF */
    /* postcondition : DISTR(\eta_1, \eta_2) computes a CNF for \eta_1 \vee \eta_2 */
begin function
     case
              \eta_1 is \eta_{11} \wedge \eta_{12}: return DISTR(\eta_{11}, \eta_2) \wedge DISTR(\eta_{12}, \eta_2)
              \eta_2 is \eta_{21} \wedge \eta_{22}: return DISTR(\eta_1, \eta_{21}) \wedge DISTR(\eta_1, \eta_{22})
             otherwise (=no conjunctions) : return \eta_1 \vee \eta_2
     end case
end function
```


Example of CNF

■ 1.Transform $\phi = (\neg p \land q) \rightarrow (p \land (r \rightarrow q))$ into implication-free formula ϕ_1

```
IMPL_FREE \phi = \neg \text{IMPL\_FREE} (\neg p \land q) \lor \text{IMPL\_FREE} (p \land (r \rightarrow q))
                      = \neg ((\texttt{IMPL\_FREE} \neg p) \land (\texttt{IMPL\_FREE} q)) \lor \texttt{IMPL\_FREE} (p \land (r \rightarrow q))
                      = \neg ((\neg p) \land \text{IMPL\_FREE } q) \lor \text{IMPL\_FREE } (p \land (r \rightarrow q))
                      = \neg (\neg p \land q) \lor \text{IMPL\_FREE}(p \land (r \rightarrow q))
                      = \neg (\neg p \land q) \lor ((\text{IMPL\_FREE } p) \land \text{IMPL\_FREE} (r \rightarrow q))
                      = \neg (\neg p \land q) \lor (p \land IMPL\_FREE(r \rightarrow q))
                      = \neg (\neg p \land q) \lor (p \land (\neg (\text{IMPL\_FREE} \, r) \lor (\text{IMPL\_FREE} \, q)))
                      = \neg (\neg p \land a) \lor (p \land (\neg r \lor (\text{IMPL\_FREE } a)))
                      = \neg (\neg p \land a) \lor (p \land (\neg r \lor a)).
```


Example of CNF

2. Transform implication-free ϕ_1 into NNF ϕ_2

NNF (IMPL_FREE
$$\phi$$
) = NNF (¬(¬p \lambda q)) \lambda NNF (p \lambda (¬r \lambda q))
= NNF (¬(¬p) \lambda ¬q) \lambda NNF (p \lambda (¬r \lambda q))
= (NNF (¬¬p)) \lambda (NNF (¬q)) \lambda NNF (p \lambda (¬r \lambda q))
= (p \lambda (NNF (¬q))) \lambda NNF (p \lambda (¬r \lambda q))
= (p \lambda ¬q) \lambda (NNF (p \lambda (¬r \lambda q)))
= (p \lambda ¬q) \lambda (NNF (¬r \lambda q)))
= (p \lambda ¬q) \lambda (p \lambda (NNF (¬r)) \lambda (NNF q)))
= (p \lambda ¬q) \lambda (p \lambda (¬r \lambda (NNF q)))
= (p \lambda ¬q) \lambda (p \lambda (¬r \lambda (NNF q)))
= (p \lambda ¬q) \lambda (p \lambda (¬r \lambda (NNF q)))

Example of CNF

ullet 3. Transform implication-free and NNF ϕ_2 into CNF ψ

```
CNF (NNF (IMPL_FREE \phi)) = CNF ((p \lor \neg q) \lor (p \land (\neg r \lor q)))
                                         = DISTR (CNF (p \vee \neg q), CNF (p \wedge (\neg r \vee q)))
                                             DISTR (p \lor \neg q, CNF (p \land (\neg r \lor q)))
                                         = DISTR (p \lor \neg q, p \land (\neg r \lor q))
                                         = DISTR (p \lor \neg q, p) \land \text{DISTR} (p \lor \neg q, \neg r \lor q)
                                         = (p \lor \neg q \lor p) \land DISTR(p \lor \neg q, \neg r \lor q)
                                         = (p \vee \neg q \vee p) \wedge (p \vee \neg q \vee \neg r \vee q).
```


Exercise

Transform the following formula into CNF

$$\neg (p \rightarrow (\neg (q \land (\neg p \rightarrow q))))$$

Horn clauses

Definition 1.46 A Horn formula is a formula ϕ of propositional logic if it can be generated as an instance of H in this grammar:

- 1. P ::= ⊥ | T | p
- 2. $A := P \mid P \wedge A$
- 3. $C := A \rightarrow P$
- 4. $H:: = C \mid C \wedge H$.
 - Each instance of C is a Horn clause.

Examples of Horn formulas

- Examples of Horn formulas
 - $(p \land q \land s \rightarrow p) \land (q \land r \rightarrow p) \land (p \land s \rightarrow s)$
 - $(p \land q \land s \rightarrow \bot) \land (q \land r \rightarrow p) \land (\top \rightarrow s)$
 - $(p_2 \land p_3 \land p_5 \rightarrow p_{13}) \land (\top \rightarrow p_5) \land (p_5 \land p_{11} \rightarrow \bot).$
- Examples of formulas which are not Horn formulas
 - $(p \land q \land s \rightarrow \neg p) \land (q \land r \rightarrow p) \land (p \land s \rightarrow s)$
 - $(p \land q \land s \rightarrow \bot) \land (\neg q \land r \rightarrow p) \land (\top \rightarrow s)$
 - $(p_2 \wedge p_3 \wedge p_5 \rightarrow p_{13} \wedge p_{27}) \wedge (\top \wedge p_5) \wedge (p_5 \wedge p_{11} \rightarrow \bot)$
 - $(p_2 \wedge p_3 \wedge p_5 \rightarrow p_{13} \wedge p_{27}) \wedge (\top \wedge p_5) \wedge (p_5 \wedge p_{11} \vee \bot)$

Horn clauses and satisfiability

- The algorithm for deciding the satisfiability of a Horn formula φ maintains a list of all occurrences of type P in φ and proceeds like this:
 - 1. It marks \top if it occurs in that list.
 - If there is a conjunct $P_1 \wedge P_2 \wedge ... \wedge P_{ki} \rightarrow P'$ of ϕ such that all P_j with $1 \leq j \leq k_i$ are marked, mark P' as well and goto 2. Otherwise (= there is no conjunct $P_1 \wedge P_2 \wedge ... \wedge P_{ki} \rightarrow P'$ such that all P_j are marked) goto 3.
 - If \perp is marked, print out 'The Horn formula ϕ is unsatisfiable.' and stop. Otherwise, goto 4.
 - 4. Print out 'The Horn formula ϕ is satisfiable.' and stop.

HORN function

```
function HORN(\phi)
   /* precondition: \phi is Horn formula */
   /* postcondition : HORN(\phi) decides the satisfiability for \phi */
begin function
    mark all occurrences of \top in \phi
   while there is a conjunct P_1 \wedge P_2 \wedge ... \wedge P_{ki} \rightarrow P' of \phi
          such that all P are marked but P isn't do
          mark P'
    end while
    if \(\perp \) is marked then return 'unsatisfiable' else return 'satisfiable'
end function
```

Correctness of the HORN algorithm

- The HORN algorithm is deterministic and correct
 - The algorithm terminates on all Horn formulas ϕ , and
 - Its output is always correct.
- Theorem 1.47 the algorithm HORN is correct for the satisfiability decision problem of Horn formulas and has no more than n + 1 cycles in its while statement if n is the number of atom is in ϕ . In particular, HORN always terminates on correct input.

Exercise

Apply HORN algorithm

$$\begin{array}{c} \blacksquare (p \land q \land w \to \bot) \land (t \to \bot) \land (r \to p) \land (T \to r) \land (T \to q) \\ \land (r \land u \to w) \land (u \to s) \land (T \to u) \end{array}$$

$$(p_{\scriptscriptstyle 5} \! \to p_{\scriptscriptstyle 11}) \ \land \ (p_{\scriptscriptstyle 2} \land \ p_{\scriptscriptstyle 3} \land \ p_{\scriptscriptstyle 5} \! \to p_{\scriptscriptstyle 13}) \ \land \ (T \! \to \! p_{\scriptscriptstyle 5}) \land (p_{\scriptscriptstyle 5} \land \ p_{\scriptscriptstyle 11} \! \to \bot)$$