Propositional Calculus - Hilbert system H

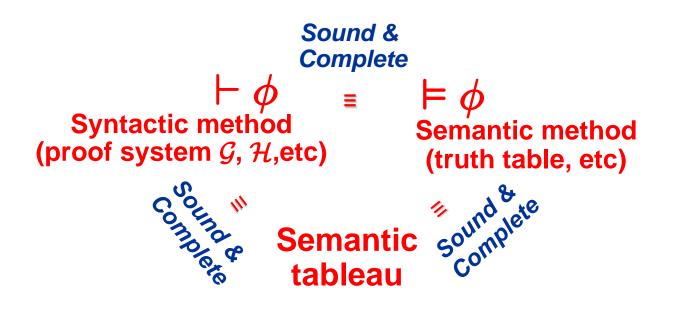
Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Review

Goal of logic

- To check whether given a formula ϕ is valid
- To prove a given formula ϕ



Review (cont.)

Remember the following facts

- Although we have many binary operators ({∨,∧,→,←,↔, ↓, ↑,⊕}), ↑ can replace all other binary operators through semantic equivalence. Similarly, {→, ¬} is an adequate set of binary operators.
- $\nvDash \phi$ does not necessarily mean $\vDash \neg \phi$
- Deductive proof cannot disprove \u03c6 (i.e. claiming that there does not exist a proof for \u03c6) while semantic method can show both validity and satisfiability of \u03c6
- Very few logics have decision procedure for validity check (i.e., truth table). Thus, we use deductive proof in spite of the above weakness.
- A proof tree in G grows up while a proof tree in H shrinks down according to characteristics of its inference rules
 - Thus, a proof in \mathcal{G} is easier than a proof in \mathcal{H} in general

Suppose that

Sound verification tools

- there is a target software S
 there is a formal requirement R
- We can make a state machine (automata) of S, say A_S
 - A state of A_S consists of all variables including a program counter.
- Any state machine can be encoded into a predicate logic formual $\phi_{a_{\rm s}}$
 - We will see this encoding in the first order logic classes
- Program verification is simply to prove $\phi_{A_S} \vDash \mathsf{R}$
- For this purpose, we use a formal verification tool V so that $\phi_{A_S} \vdash_{\sf V} \sf R$
 - We call V is sound whenever S has a bug, V always detects the bug ■ $\phi_{A_S} \nvDash R \Rightarrow \phi_{A_S} \nvDash_V R$ (iff $\phi_{A_S} \vdash_V R \Rightarrow \phi_{A_S} \vDash R$)
 - We call V is complete whenever V detects a bug, that bug is a real bug. ■ $\phi_{A_S} \nvDash_V \mathsf{R} \to \phi_{A_S} \nvDash \mathsf{R}$ (iff $\phi_{A_S} \vDash \mathsf{R} \Rightarrow \phi_{A_S} \vdash_V \mathsf{R}$)

 In reality, most formal verification tools are just sound, not complete (I.e., formal verification tools may raise false alarms). However, for debugging purpose, soundness is great.

CS402 Fall 2007

The Hilbert system ${\cal H}$

- Def 3.9 \mathcal{H} is a deductive system with three axiom schemes and one rule of inference.
 - For any formulas A,B,C, the following formulas are axioms (in fact axiom schemata):
 - Axiom1: \vdash (A \rightarrow (B \rightarrow A))
 - $\quad \ \ \, \text{Axiom2:} \ \ \vdash (\mathsf{A} \rightarrow (\mathsf{B} \rightarrow \mathsf{C})) \rightarrow ((\mathsf{A} \rightarrow \mathsf{B}) \rightarrow (\mathsf{A} \rightarrow \mathsf{C})) \\$
 - Axiom3: $\vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))$
 - The rule of inference is called modus ponens (MP). For any formulas A,B

$$\begin{array}{c|c} \vdash A & \vdash A \rightarrow B \\ \hline & \vdash B \end{array}$$

- Note that axioms used in a proof in *H* are usually very long because the MP rule reduces a length of formula (see Thm 3.10)
 - at least one premise ($\vdash A \rightarrow B$) is longer than conclusion (B)

\mathcal{G} v.s. \mathcal{H}

- G is a deductive system for a set of formulas while
 H is a deductive system for a single formula
- G has one form of axiom and many rules (for 8 α rules and 7 β -rules) while \mathcal{H} has several axioms (in fact axiom schemes) but only one rule

Derived rules

- Def. 3.12 Let U be a set of formulas and A a formula. The notation U ⊢ A means that the formulas in U are assumptions in the proof of A. If A_i ∈ U, a proof of U ⊢ A may include an element of the form U ⊢ A_i
- Collorary. $U \cup \{A\} \vdash A$
- Rule 3.13 Deduction rule

$$\frac{U \cup \{A\} \vdash B}{U \vdash A \to B}$$

Note that deduction rule increase the size of a formula, thus making a proof easier compared to MP rule

Soundness of deduction rule

 $U \vdash A \rightarrow B$ conclusion

 $U \cup \{A\} \vdash B$ premise

Thm 3.14 The deduction rule is a sound derived rule

- By induction on the length **n** of the proof $U \cup \{A\} \vdash B$
 - For n=1, B is proved in one step, so B must be either an element of $U \cup \{A\}$ or an axiom of \mathcal{H}
 - If B is A, then $\vdash A \rightarrow B$ by Thm 3.10 ($\vdash A \rightarrow A$), so certainly U $\vdash A \rightarrow B$.
 - Otherwise (i.e., B∈U or B is an axion), the following is a proof of U ⊢ A → B

axiom 1

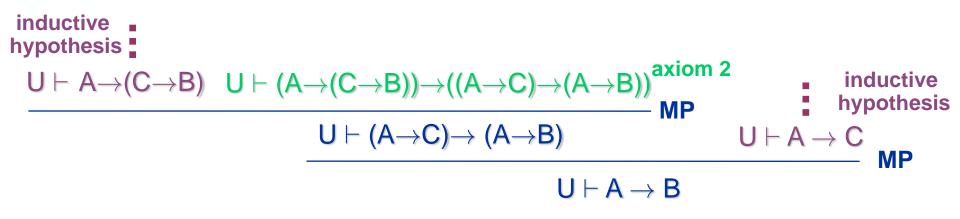
$$U \vdash B$$
 $U \vdash B \rightarrow (A \rightarrow B)$
 $U \vdash A \rightarrow B$ MP

Soundness of deduction rule

 $UDash A{ o}B$ conclusion

 $U \cup \{A\} \vdash B$ premise

- For n>1, the last step in the proof of U∪{A}⊢B is an inference of B using MP.
 - there is a formula C such that formula i in the proof is U ∪ {A} ⊢ C and formula j is U ∪ {A} ⊢ C → B, for i, j < n. By the inductive hypothesis U ⊢ A → C and U ⊢ A → (C → B). A proof of U ⊢ A → B is given by



Theorems and derived rules in ${\cal H}$

- Note that any theorem of the form $U \vdash A \rightarrow B$ justifies a derived rule of the form $\underbrace{U \vdash A}_{U \vdash B}$ simply by using MP on
- Rule 3.15 Contrapositive rule
 by Axiom 3 ⊢ (¬B→¬A) → (A→B))

$$\frac{U \vdash \neg B \to \neg A}{U \vdash A \to B}$$

- Rule 3.17 Transitivity rule
 by Thm 3.16 \vdash (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)] $\frac{U \vdash A \rightarrow B \qquad U \vdash B \rightarrow C}{U \vdash A \rightarrow C}$
- Rule 3.19 Exchange of antecedent rule $U \vdash A \rightarrow (B \rightarrow C)$ by Thm 3.18 \vdash [(A \rightarrow (B \rightarrow C)] \rightarrow [(B \rightarrow (A \rightarrow C)] $U \vdash B \rightarrow (A \rightarrow C)$]

Theorems and derived rules in ${\cal H}$

- Rule 3.23 Double negation rule
 by Thm 3.22 U \vdash \neg \neg A \rightarrow A
 $U \vdash \neg \neg A$ $U \vdash \neg \neg A$
- Let true be an abbreviation for $p \to p$ and false be an abbreviation for $\neg(p \to p)$
- Rule 3.27 Reductio ad absurdum (RAA) rule $U \vdash \neg A \rightarrow false$
- Thm 3.28 \vdash (A \rightarrow \neg A) \rightarrow \neg A
- Thm 3.31 Weakening
 - $\bullet \quad \vdash \mathsf{A} \to \mathsf{A} \lor \mathsf{B}$
 - $\bullet \quad \vdash \mathsf{B} \to \mathsf{A} \lor \mathsf{B}$
 - \vdash (A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))

 $II \vdash A$