Propositional Calculus - Natural deduction

Moonzoo Kim CS Dept. KAIST

moonzoo@cs.kaist.ac.kr

Review

Goal of logic

- To check whether given a formula ϕ is valid
- To prove a given formula ϕ

Deductive proofs (1/3)

- Suppose we want to know if ϕ belongs to the theory $\mathcal{T}(U)$.
 - By Thm 2.38 U $\vDash \phi$ iff $\vDash A_1 \land \ldots \land A_n \rightarrow \phi$ where U = { A_1, \ldots, A_n }
 - Thus, $\phi \in \mathcal{T}(U)$ iff a decision procedure for validity answers 'yes'
- However, there are several problems with this semantic approach
 - The set of axioms may be infinite
 - e.x. Hilbert deductive system \mathcal{H} has an axiom schema (A \rightarrow (B \rightarrow A)), which generates an infinite number of axioms by replacing schemata variables A,B and C with infinitely many subformulas (e.g. $\phi \land \psi, \neg \phi \lor \psi$, etc)
 - e.x.2. Peano and ZFC theories cannot be finitely axiomatized.
 - Very few logics have decision procedures for validity of ϕ
 - ex. propositional logic has a decision procedure using truth table
 - ex2. predicate logic does not have such decision procedure
- There is another approach to logic called deductive proofs.
 - Instead of working with semantic concepts like interpretation/model and consequence
 - we choose a set of axioms and a set of syntactical rules for deducing new formulas from the axioms Intro. to Logic

CS402

3

Def 3.1

Deductive proofs (2/3)

- A deductive system consists of
 - a set of axioms and
 - a set of inference rules
- A proof in a deductive system is a sequence of sets of formulas s.t. each element is either an axiom or it can be inferred from previous elements of the sequence using a rule of inference
- If {A} is the last element of the sequence, A is a theorem, the sequence is a proof of A, and A is provable, denoted ⊢ A
- Example of a proof of $(p \lor q) \rightarrow (q \lor p)$ in gentzen system \mathcal{G}
 - {¬p,q,p}.{¬q,q,p}.{¬(p∨q),q,p}.{¬(p∨q),(q∨p)}.{(p∨q)→(q∨p)}

axioms

tree representation of this proof is more intuitive

Deductive proofs (3/3)

Deductive proofs has following benefits

- There may be an infinite number of axioms, but only a finite number of axioms will appear in any proof
- Any particular proof consists of a finite sequence of sets of formulas, and the legality of each individual deduction can be easily and efficiently determined from the syntax of the formulas
- The proof of a formula clearly shows which axioms, theorems and rules are used and for what purposes.
 - Such a pattern (i.e. relationship between formulas) can then be transferred to other similar proofs, or modified to prove different results.
 - Lemmas and corollaries can be obtained and can be used later
- But with a new problem
 - deduction is defined purely in terms of syntactical formula manipulation
 - But it is not amenable to systematic search procedures
 - no brute-force search is possible because any axiom can be used

Natural deduction

- In natural deduction, similar to other deductive proof systems such as \mathcal{G} and \mathcal{H} , we have a collection of proof rules.
 - Natural deduction does not have axioms.
- Suppose we have premises .and $\phi_1, \phi_2, ..., \phi_n$ and would like to prove a conclusion ψ . The intention is denoted by

 $\phi_{\scriptscriptstyle 1},\phi_{\scriptscriptstyle 2},\ldots,\phi_{\scriptscriptstyle n}\vdash\psi$

We call this expression a sequent; it is valid if a proof for it can be found

Def: A logical formula ϕ with valid sequent $\vdash \phi$ is theorem

Proof rules (1/3)

- Λi says: to prove φ ∧ ψ, you must first prove φ and ψ separately and then use the rule ∧ i.
- A e₁ says: to prove φ, try proving φ ∧ ψ and then use the rule ∧ e₁. Actually this does not sound like very good advice because probably proving φ ∧ ψ will be harder than proving φ alone. However, you might find that you already have φ ∧ ψ lying around, so that's when this rule is useful.

Proof rules (1/3)

- $\forall i_1$ says: to prove $\phi \lor \psi$, try proving ϕ . Again, in general it is harder to prove ϕ than it is to prove $\phi \lor \psi$, so this will usually be useful only if you have already managed to prove ϕ .
- \vee e has an excellent procedural interpretation. It says: if you have $\phi \vee \psi$, and you want to prove some χ , then try to prove χ from ϕ and from ψ in turn
 - In those subproofs, of course you can use the other prevailing premises as well

KAIS

Some useful derived rules

- At any stage of a proof, it is permitted to introduce any formula as assumption, by choosing a proof rule that opens a box. As we saw, natural deduction employs boxes to control the scope of assumptions.
- When an assumption is introduced, a box is opened. Discharging assumptions is achieved by closing a box according to the pattern of its particular proof rule.

Example 1

$p \land \neg q \rightarrow r, \ \neg r, \ p \vdash q$

1	$p \land \neg q \rightarrow r$	premise
2	<i>r</i>	premise
3	р	premise
4	$\neg q$	assumption
5	$p \wedge \neg q$	∧i 3,4
6	r	→e 1,5
7	L	¬e 6, 2
8	$\neg \neg q$	¬i 4—7
9	q	

$$p \rightarrow q \vdash \neg p \lor q$$

Example 2

1	$p \rightarrow q$	premise
2	$\neg p \lor p$	LEM
3	$\neg p$	assumption
4	$\neg p \lor q$	$\vee i_1 3$
5	р	assumption
6	q	→e 1,5
7	$\neg p \lor q$	∨i ₂ 6
8	$\neg p \lor q$	∨e 2, 3–4, 5–7

Example 3 (Law of Excluded Middle)

Proof Tips

- First, write down premises at the top of the paper
- Second, write down a conclusion at the bottom of the paper
- Third, look at the structure of the conclusion and try to find compatible proof rules backwardly
 - Pattern matching works, although not all the time.

