Temporal Logic - LTL, CTL, and CTL*

Moonzoo Kim
CS Division of EECS Dept. KAIST
moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

CTL is not more expressive than LTL

- CTL cannot select a range of paths

- F G p in LTL is not equivalent to AF AG p
$-\mathcal{M}, \mathrm{s}_{0}=\mathrm{F}$ G p but $\mathcal{M}, \mathrm{s}_{0} \not \models \mathrm{AF}$ AG p
AF AG p is strictly stronger than F G p
AF EG p is strictly weaker than F G p
- Similarly, $\mathrm{Fp} \rightarrow \mathrm{Fq}$ is not equivalent to AF $p \rightarrow$ AF q, neither to AG ($p \rightarrow$ AF q)
- Remark
- $F \times p \equiv X F p$ in LTL
- AF AX p is not equivalent to AX AF p

CTL*

- CTL* combines the expressive powers of LTL and CTL
- Syntax of CTL*
- State formula $\phi::=\mathrm{T}|\mathrm{p}| \neg \phi|\phi \wedge \phi| \mathrm{A}[\alpha] \mid \mathrm{E}[\alpha]$
- Path formula $\alpha::=\phi|\neg \alpha| \alpha \wedge \alpha|\alpha \cup \alpha| \mathbf{G} \alpha|\mathbf{F} \alpha| \mathbf{X} \alpha$
- LTL is a subset of CTL*
- LTL formula α is equivalent to $\mathrm{A}[\alpha]$ in CTL*
- CTL is a subset of CTL*
- We restrict $\alpha::=\phi$ U $\phi|\mathrm{G} \phi| \mathrm{F} \phi \mid \mathrm{X} \phi$
- No boolean connectives in path formula
- Not real limitation. See page 6

No nesting of the path modalities X,F, and G

Relationship between LTL,CTL, and CTL*

Relationship between LTL,CTL, and CTL*

- In CTL but not in LTL
- $\psi_{1}=$ AG EF p

- Proof through RAA

Let ϕ be an LTL formula s.t. A[$\phi]$ is equivalent to AG EF p.

- Since $\mathcal{M}, \mathrm{s} \vDash$ AG EF $p, \mathcal{M}, \mathrm{~s} \vDash \mathrm{~A}[\phi]$
- The paths in \mathcal{M} ' are a subset of those from s in \mathcal{M}, so $\mathcal{M}^{\prime}, \mathrm{s} \vDash \mathrm{A}[\phi]$

However, \mathcal{M}^{\prime}, s $\not \models$ AG EF p. Contradiction

- In both CTL and LTL
- $\psi_{2}=\mathrm{AG}(\mathrm{p} \rightarrow \mathrm{AF} q)$ in CTL or $\mathrm{G}(\mathrm{p} \rightarrow \mathrm{Fq})$ in LTL
- In LTL but not in CTL
- $\psi_{3}=\mathrm{A}[\mathrm{GFp} \rightarrow \mathrm{Fq}$]
if there are infinitely many p along the path, then there is an occurrence of q
- In CTL* but neither in CTL nor in LTL
- $\psi_{4}=\mathrm{E}[\mathrm{G} \mathrm{F} \mathrm{p}$]
there is a path with infinitely many p

Boolean combinations of temporal formulas in CTL

- We can translate any CTL formula having boolean combinations of path formulas into a CTL formula that does not.
- Examples
- $E[F p \wedge F q] \equiv E F[p \wedge E F q] \vee E F[q \wedge E F p]$
- If we have $F p \wedge F q$ along any path, then either the p must come before the q , or the other way around
- $E\left[\left(p_{1} \cup q_{1}\right) \wedge\left(p_{2} \cup q_{2}\right)\right] \equiv$ $E\left[\left(p_{1} \wedge p_{2}\right) \cup\left(q_{1} \wedge E\left[p_{2} \cup q_{2}\right)\right] \vee E\left[\left(p_{1} \wedge p_{2}\right) \cup\left(q_{2} \wedge E\left[p_{1} \cup q_{1}\right)\right]\right]\right.$
- $E[\neg(p \cup q)] \equiv E[\neg q \cup(\neg p \wedge \neg q)] \vee E G \neg q$
since $A[p \cup q] \equiv \neg(E[\neg q \cup(\neg p \wedge \neg q)] \vee E G \neg q)$
- $E[\neg X p] \equiv E X \neg p$

Complexity of Model Checking

- Let \mathcal{M} be a target transition system with N states and M transitions
- Upper bound of model checking complexity
- LTL-formula $\phi: O\left((N+M) \cdot 2^{|\phi|}\right)$
- CTL-formula $\phi: O((N+M) \cdot|\phi|)$
- CTL*-formula $\phi: O\left((N+M) \cdot 2^{|\phi|}\right)$
- Lower bound of model checking complexity
- LTL-formula ϕ : PSpace-hard -> PSpace-complete Note that $\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PS}$ pace \subseteq EXP \subseteq EXPSpace
- CTL-formula ϕ : P-hard -> P-complete
- CTL*-formula ϕ : PSpace-hard -> PSpace-complete
- For more details, "The Complexity of Temporal Logic Model Checking" by Ph. Schnoebelen
- Advances in Modal Logic, Volume 4, 1-44, 2002

