Temporal Logic - LTL, CTL, and CTL*

Moonzoo Kim CS Division of EECS Dept. KAIST

moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07

CTL is not more expressive than LTL

CTL cannot select a range of paths FG p in LTL is not equivalent to AF AG p M,s₀ ⊨ FG p but M,s₀ ⊭ AF AG p AF AG p is strictly stronger than FG p AF EG p is strictly weaker than FG p Similarly, F p → F q is not equivalent to AF p → AF q, neither to AG (p → AF q) Remark FX p ≡ X F p in LTL

AF AX p is not equivalent to AX AF p

CTL*

- CTL* combines the expressive powers of LTL and CTL
- Syntax of CTL*
 - State formula $\phi ::= T | p | \neg \phi | \phi \land \phi | A [\alpha] | E[\alpha]$
 - Path formula $\alpha ::= \phi \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \cup \alpha \mid \mathsf{G} \mid \alpha \mid \mathsf{F} \mid \alpha \mid \mathsf{X} \mid \alpha$
- LTL is a subset of CTL*
 - LTL formula α is equivalent to A[α] in CTL*
- CTL is a subset of CTL*
 - We restrict $\alpha ::= \phi \cup \phi \mid \mathsf{G} \phi \mid \mathsf{F} \phi \mid \mathsf{X} \phi$
 - No boolean connectives in path formula
 - Not real limitation. See page 6
 - No nesting of the path modalities X,F, and G

Relationship between LTL, CTL, and CTL*

Relationship between LTL,CTL, and CTL*

Intro. to Logic

CS402 Fall 2007

KAISI

Boolean combinations of temporal formulas in CTL

We can translate any CTL formula having boolean combinations of path formulas into a CTL formula that does not.

Examples

- $E[Fp \land Fq] \equiv EF[p \land EFq] \lor EF[q \land EFp]$
 - If we have F $p \land F q$ along any path, then either the p must come before the q, or the other way around
- E [$(p_1 \cup q_1) \land (p_2 \cup q_2)$] = E[$(p_1 \land p_2) \cup (q_1 \land E[p_2 \cup q_2])$] $\lor E[(p_1 \land p_2) \cup (q_2 \land E[p_1 \cup q_1])]$
- $E[\neg(p \cup q)] \equiv E[\neg q \cup (\neg p \land \neg q)] \lor EG \neg q$
 - since A [p U q] = \neg (E[\neg q U (\neg p $\land \neg$ q)] \lor EG \neg q)
- $E[\neg X p] \equiv EX \neg p$

Complexity of Model Checking

- Let \mathcal{M} be a target transition system with N states and M transitions
- Upper bound of model checking complexity
 - LTL-formula ϕ : $O((N+M) \cdot 2^{|\phi|})$
 - CTL-formula ϕ : $O((N+M) \cdot |\phi|)$
 - CTL*-formula ϕ : $O((N+M)\cdot 2^{|\phi|})$
- Lower bound of model checking complexity
 - **LTL-formula** ϕ : **PSpace-hard -> PSpace-complete**
 - Note that $P \subseteq NP \subseteq PSpace \subseteq EXP \subseteq EXPSpace$
 - CTL-formula ϕ : P-hard -> P-complete
 - CTL*-formula \(\phi\) : PSpace-hard -> PSpace-complete
- For more details, "The Complexity of Temporal Logic Model Checking" by Ph. Schnoebelen

Advances in Modal Logic, Volume 4, 1-44, 2002

