Linear Temporal Logic

Moonzoo Kim CS Division of EECS Dept. KAIST

Review: Model checking

Model checking

- In a model-based approach, the system is represented by a model $\mathcal M$. The specification is again represented by a formula $\phi.$
 - The verification consists of computing whether \mathcal{M} satisfies $\phi \mathcal{M} \models \phi$
 - Caution: $\mathcal{M} \vDash \phi$ represents satisfaction, not semantic entailment

In model checking,

- \blacksquare The model $\mathcal M$ is a transition systems and
- the property ϕ is a formula in temporal logic
 - ex. \Box p, \Box q, \diamondsuit q, \Box \diamondsuit q

Motivation for Temporal Logic

So far, we have analyzed sequential programs only

- assert is a convenient way of specify requirement properties
- Safety properties are enough for sequential programs
 - "Bad thing never happens"
 - Ex. Mutual exclusion
- For concurrent programs, we need more than assert to specify important requirement properties conveniently
 - Liveness properties
 - "Good thing eventually happens"
 - Ex. Deadlock freedom
 - Ex. Starvation freedom
- Temporal logic is an adequate logic for describing requirement properties for concurrent system

Motivating Example (1/2)

Mutual exclusion protocol

Quoted from "The art of multiprocessor programing" by M.Herlihy et al, published by Morgan Kaufmann 2008

- Alice and Bob are neighbors, and they share a yard.
- Alice owns a cat and Bob owns a dog.
- Alice and Bob should coordinate that both pets are never in the yard at the same time.
- We would like to design a mutual exclusion protocol to satisfy
 - 1. Mutual exclusion
 - pets are excluded from being in the yard at the same time
 - 2. Deadlock-freedom
 - Both pets want to enter the yard, then eventually at leas one of them succeeds
 - 3. Starvation-freedom/lock-out freedom
 - If a pet wants to enter the yard, it will eventually succeed

Motivating Example (2/2)

- One protocol design: Alice and Bob set up a flag pole at each house
 - Protocol @ Alice
 - Alice raises her flag
 - 2. When Bob's flag is lowered, she unleashes her cat
 - 3. When her cat comes back, she lowers her flag
 - Protocol @ Bob
 - He raises his flag
 - 2. While Alice's flag is raised
 - 1. Bob lowers his flag
 - 2. Bob waits until Alice's flag is lowered
 - 3. Bob raises his flag
 - 3. As soon as his flag is raised and hers is down, he unleashes his dog
 - 4. When his dog comes back, he lowers his flag

Linear time temporal logic (LTL)

- LTL models time as a sequence of states, extending infinitely into the future
 - sometimes a sequence of states is called a computation path or an execution path, or simply a path
- Def 3.1 LTL has the following syntax
 - $\phi ::= \mathbf{T} \mid \perp \mid \mathbf{p} \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi$ $\mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \cup \phi \mid \phi \otimes \phi \mid \phi \otimes \phi \mid \phi \otimes \phi$

where p is any propositional atom from some set Atoms

- Operator precedence
 - the unary connectives bind most tightly. Next in the order come U, R, W, ∧, ∨, and →

Semantics of LTL (1/3)

- Def 3.4 A transition system (called model) $\mathcal{M} = (S, \rightarrow, L)$
 - a set of states S
 - a transition relation \rightarrow (a binary relation on S)
 - such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$
 - a labeling function L: $S \rightarrow P$ (Atoms)
- Example
 - $S=\{s_0, s_1, s_2\}$
 - $\rightarrow = \{(s_0, s_1), (s_1, s_0), (s_1, s_2), (s_0, s_2), (s_2, s_2)\}$
 - L={ $(s_0, \{p,q\}), (s_1, \{q,r\}), (s_2, \{r\})$ }
- Def. 3.5 A path in a model $\mathcal{M} = (S, \rightarrow, L)$ is an infinite sequence of states $s_{i_1}, s_{i_2}, s_{i_3}, ...$ in S s.t. for each $j \ge 1$, $s_{i_j} \rightarrow s_{i_{j+1}}$. We write the path as $s_{i_1} \rightarrow s_{i_2} \rightarrow ...$
 - From now on if there is no confusion, we drop the subscript index i for the sake of simple description
- We write π^i for the suffix of a path starting at s_{i} .
 - ex. π^3 is $s_3 \rightarrow s_4 \rightarrow \dots$

So

Semantics of LTL (2/3)

- Def 3.6 Let *M* = (S, →, L) be a model and π = s₁ → ... be a path in *M*. Whether π satisfies an LTL formula is defined by the satisfaction relation ⊨ as follows:
 - **Basics:** $\pi \models \top$, $\pi \nvDash \bot$, $\pi \models p$ iff $p \in L(s_1)$, $\pi \models \neg \phi$ iff $\pi \nvDash \phi$
 - Boolean operators: $\pi \vDash p \land q$ iff $\pi \vDash p$ and $\pi \vDash q$
 - similar for other boolean binary operators
 - $\pi \vDash \mathsf{X} \phi$ iff $\pi^2 \vDash \phi$ (next \bigcirc)
 - $\pi \models \mathbf{G} \phi$ iff for all $i \ge 1$, $\pi^i \models \phi$ (always \Box)
 - $\pi \models \mathbf{F} \phi$ iff there is some $i \ge 1$, $\pi^i \models \phi$ (eventually \diamondsuit)
 - $\pi \vDash \phi \bigcup \psi$ iff there is some $i \ge 1$ s.t. $\pi^i \vDash \psi$ and for all j=1,...,i-1 we have $\pi^j \vDash \phi$ (strong until)
 - $\pi \vDash \phi \ W \ \psi$ iff either (weak until)
 - either there is some i \geq 1 s.t. $\pi^i \models \psi$ and for all j=1,...,i-1 we have $\pi^j \models \phi$
 - or for all $k \ge 1$ we have $\pi^k \vDash \phi$
 - $\pi \vDash \phi \mathbf{R} \psi$ iff either (release)
 - either there is some i \geq 1 s.t. $\pi^i \vDash \phi$ and for all j=1,...,i we have $\pi^j \vDash \psi$
 - or for all k \geq 1 we have $\pi^k \vDash \psi$

interpreting formulae...

LTL: (<>(b1 && (!b2 U b2))) -> []!a3

another example

LTL: (<>b1) -> (<>b2)

Semantics of LTL (3/3)

- Def 3.8 Suppose *M* = (S, →, L) is a model, s ∈ S, and φ an LTL formula. We write *M*,s ⊨ φ if for every execution path π of *M* starting at s, we have π ⊨ φ
 - If \mathcal{M} is clear from the context, we write $\mathbf{s} \models \phi$
- Example
 - $s_0 \models p \land q$ since $\pi \models p \land q$ for every path π beginning in s_0
 - $\mathbf{s}_0 \models \neg \mathbf{r}, \, \mathbf{s}_0 \models \top$
 - $s_0 \vDash X r, s_0 \nvDash X (q \land r)$
 - $s_0 \models G \neg (p \land r), s_2 \models G r$
 - For any s of \mathcal{M} , s \vDash F(\neg q \land r) \rightarrow F G r
 - Note that s_2 satisfies $\neg q \land r$
 - s₀ ⊭ G F p
 - $\mathbf{s}_0 \rightarrow \mathbf{s}_1 \rightarrow \mathbf{s}_0 \rightarrow \mathbf{s}_1 \dots \models \mathbf{G} \models \mathbf{p}$
 - $s_0 \rightarrow s_2 \rightarrow s_2 \rightarrow s_2 \dots \nvDash G \ F \ p$
 - $\bullet \quad s_0 \vDash G \ F \ p \rightarrow G \ F \ r$
 - $s_0 \nvDash G F r \rightarrow G F p$

Practical patterns of specification

- For any state, if a request occurs, then it will eventually be acknowledge
 - G(requested → F acknowledged)
- A certain process is enabled infinitely often on every computation path
 - G F enabled
- Whatever happens, a certain process will eventually be permanently deadlocked
 - F G deadlock
- If the process is enabled infinitely often, then it runs infinitely often
 - G F enabled \rightarrow G F running
- An upwards traveling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor

- It is impossible to get to a state where a system has started but is not ready
 - $\phi = G \neg (started \land \neg ready)$
 - What is the meaning of (intuitive) negation of ϕ ?
 - For every path, it is possible to get to such a state (started ∧¬ready).
 - There exists a such path that gets to such a state.
 - we cannot express this meaning directly
- LTL has limited expressive power
 - For example, LTL cannot express statements which assert the existence of a path
 - From any state s, there exists a path π starting from s to get to a restart state
 - The lift can remain idle on the third floor with its doors closed
 - Computation Tree Logic (CTL) has operators for quantifying over paths and can express these properties

Summary of practical patterns

Gр	always p	invariance
Fр	eventually p	guarantee
$p \rightarrow (F q)$	p implies eventually q	response
$p \rightarrow (q U r)$	p implies q until r	precedence
GFp	always, eventually p	recurrence (progress)
FGp	eventually, always p	stability (non- progress)
$F p \rightarrow F q$	eventually p implies eventually q	correlation

Equivalences between LTL formulas

- Def 3.9 $\phi \equiv \psi$ if for all models \mathcal{M} and all paths π in \mathcal{M} : $\pi \vDash \phi$ iff $\pi \vDash \psi$
- $\neg \mathsf{G} \phi \equiv \mathsf{F} \neg \phi, \neg \mathsf{F} \phi \equiv \mathsf{G} \neg \phi, \neg \mathsf{X} \phi \equiv \mathsf{X} \neg \phi$
- $\neg (\phi \cup \psi) \equiv \neg \phi \land \neg \psi, \neg (\phi \land \psi) \equiv \neg \phi \cup \neg \psi$
- F ($\phi \lor \psi$) = F $\phi \lor$ F ψ
- G ($\phi \land \psi$) = G $\phi \land$ G ψ
- $F \phi \equiv T U \phi, G \phi \equiv \bot R \phi$
- $\phi \cup \psi \equiv \phi \cup \psi \wedge F \psi$
- $\phi W \psi \equiv \phi U \psi \lor G \phi$
- $\phi W \psi \equiv \psi R (\phi \lor \psi)$
- $\phi \mathsf{R} \psi \equiv \psi \mathsf{W} (\phi \land \psi)$

Adequate sets of connectives for LTL (1/2)

• X is completely orthogonal to the other connectives

- X does not help in defining any of the other connectives.
- The other way is neither possible
- Each of the sets {U,X}, {R,x}, {W,X} is adequate

$$\{U,X\}$$

$$\phi \ \mathsf{R} \ \psi \equiv \neg (\neg \phi \ \mathsf{U} \neg \psi)$$

$$\phi \ \mathsf{W} \ \psi \equiv \psi \ \mathsf{R} \ (\phi \lor \psi) \equiv \neg (\neg \psi \ \mathsf{U} \neg (\phi \lor \psi))$$

$$\{\mathsf{R},X\}$$

$$\phi \ \mathsf{U} \ \psi \equiv \neg (\neg \phi \ \mathsf{R} \neg \psi)$$

$$\phi \ \mathsf{W} \ \psi \equiv \psi \ \mathsf{R} \ (\phi \lor \psi)$$

$$\{\mathsf{W},X\}$$

$$\phi \ \mathsf{U} \ \psi \equiv \neg (\neg \phi \ \mathsf{R} \neg \psi)$$

$$\phi \mathsf{R} \psi \equiv \psi \mathsf{W} (\phi \land \psi)$$

Adequate sets of connectives for LTL (2/2)

- Thm 4.10 $\phi \cup \psi \equiv \neg (\neg \psi \cup (\neg \phi \land \neg \psi)) \land F \psi$
- Proof: take any path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ in any model
 - Suppose $s_0 \vDash \phi \cup \psi$
 - Let n be the smallest number s.t. $s_n \models \psi$
 - We know that such n exists from $\phi \cup \psi$. Thus, $s_0 \models F \psi$
 - For each k < n, $s_k \models \phi$ since $\phi \cup \psi$
 - We need to show $s_0 \models \neg(\neg \psi \cup (\neg \phi \land \neg \psi))$
 - case 1: for all i, $s_i \nvDash \neg \phi \land \neg \psi$. Then, $s_0 \vDash \neg (\neg \psi \cup (\neg \phi \land \neg \psi))$
 - case 2: for some i, $s_i \models \neg \phi \land \neg \psi$. Then, we need to show
 - (*) for each i >0, if $s_i \models \neg \phi \land \neg \psi$, then there is some j < i with $s_i \nvDash \neg \psi$ (i.e. $s_i \models \psi$)
 - **Take any i >0 with s**_i $\models \neg \phi \land \neg \psi$. We know that i > n since s₀ $\models \phi \cup \psi$. So we can take j=n and have $s_i \models \psi$
 - Conversely, suppose $s_0 \models \neg(\neg \psi \cup (\neg \phi \land \neg \psi)) \land F \psi$
 - Since $s_{o} \models F \psi$, we have a minimal **n** as before s.t. $s_{n} \models \psi$
 - case 1: for all i, $s_i \nvDash \neg \phi \land \neg \psi$ (i.e. $s_i \vDash \phi \lor \psi$). Then $s_0 \vDash \phi \cup \psi$
 - case 2: for some i, $s_i \models \neg \phi \land \neg \psi$. We need to prove for any i <n, $s_i \models \phi$
 - Suppose $s_i \nvDash \phi$ (i.e., $s_i \vDash \neg \phi$). Since n is minimal, we know $s_i \vDash \neg \psi$. So by (*) there is some j <i<n with $s_j \models \psi$, contradicting the minimality of n. Contradiction 18

Mutual exclusion example

- When concurrent processes share a resource, it may be necessary to ensure that they do not have access to the common resource at the same time
 - We need to build a protocol which allows only one process to enter critical section
- Requirement properties
 - Safety:
 - Only one process is in its critical section at anytime
 - Liveness:
 - Whenever any process requests to enter its critical section, it will eventually be permitted to do so
 - Non-blocking:
 - A process can always request to enter its critical section
 - No strict sequencing:
 - processes need not enter their critical section in strict sequence

1st model

We model two processes

- each of which is in
 - non-critical state (n) or
 - trying to enter its critical state
 (t) or
 - critical section (c)
- No self edges
- each process executes like s₂
 $n \rightarrow t \rightarrow c \rightarrow n \rightarrow ...$
 - but the two processes interleave with each other
 - only one of the two processes can make a transition at a time (asynchronous interleaving)

1st model for mutual exclusion

- Safety: $s_0 \models G \neg (c_1 \land c_2)$
- Liveness $s_0 \nvDash G(t_1 \rightarrow F c_1)$
 - see $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_7 \rightarrow s_1 \rightarrow s_3 \rightarrow s_7 \dots$
- Non-blocking
 - for every state satisfying n_i, there is a successor satisfying t_i
 - s₀ satisfies this property
 - We cannot express this property in LTL but in CTL

- No strict ordering
 - there is a path where c₁ and c₂ do not occur in strict order
 - Complement of this is
 - $G(\mathbf{C}_1 \rightarrow \mathbf{C}_1 \text{ W } (\neg \mathbf{C}_1 \land \underline{\neg \mathbf{C}_1 \text{ W } \mathbf{C}_2}))$
 - anytime we get into a c₁ state, either that condition persists indefinitely, or it ends with a non-c₁ state and in that case there is <u>no further c₁ state</u> unless and until we obtain a <u>c₂</u> state

2nd model for mutual exclusion

All 4 properties are satisfied

- Safety
- Liveness
- Non-blocking
- No strict sequencing

NuSMV model checker

- NuSMV programs consist of one or more modules.
 - one of the modules must be called main
- Modules can declare variables and assign to them.
- Assignments usually give the initial value of a variable x (init(x)) and its next value (next(x)) as an expression in terms of the current values of variables.
 - this expression can be non-deterministic
 - denoted by several expressions in braces, or no assignment at all

Example

MODULE main VAR request: boolean; status: {ready,busy}; ASSIGN init(status) := ready; next(status) := case request : busy; 1: {ready,busy}; esac; **LTLSPEC** G(request -> F status=busy)

KAIST

- request is under-specified, i.e., not controlled by the program
 - request is determined (randomly) by external environment
 - thus, whole program works nondeterministically
- Case statement is evaluated top-to-bottom

24

Modules in NuSMV

- A module is instantiated when a variable having that module name as its type is declared.
- A 3 bit counter increases from 000 to 111 repeatedly
 - Req. property
 - infinitely setting carry-out of most significant bit as 1
- By default, modules in NuSMV are composed synchronously
 - there is a global clock and, each time it ticks, each of the modules executes in parallel
 - By use of the 'process' keyword, it is possible to compose the modules asynchronously

```
MODULE main
VAR
bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);
SPEC
G F bit2.carry_out
MODULE counter_cell(carry_in)
VAR
value : boolean;
```

```
ASSIGN
```

```
init(value) := 0;
next(value) := (value + carry_in) mod 2;
DEFINE
```

carry_out := value & carry_in;

