
Linear Temporal LogicLinear Temporal LogicLinear Temporal Logic Linear Temporal Logic

Moonzoo Kim
CS Division of EECS DeptCS Division of EECS Dept.

KAIST

1

Review: Model Review: Model checkingchecking
Model checkingModel checking

In a modelIn a model--based approach, the system is represented by based approach, the system is represented by aa
modelmodel MM The specification is again represented by aThe specification is again represented by amodel model MM . The specification is again represented by a . The specification is again represented by a
formula formula φφ..

The verification consists of The verification consists of computingcomputing whether whether MM satisfies satisfies φφ MM ²² φφ
C tiC ti MM ²² φφ tt ti f titi f ti t ti t il tt ti t il tCaution: Caution: MM ²² φφ represents represents satisfactionsatisfaction, not semantic entailment, not semantic entailment

In model checking,In model checking,
The modelThe model MM is ais a transition systemstransition systems andandThe model The model MM is a is a transition systemstransition systems andand
the property the property φφ is a formula in is a formula in temporal logictemporal logic

ex. ex. p, p, q, q, ♦♦ q, q, ♦♦ qq

p
p

2

p,q

Motivation for Temporal LogicMotivation for Temporal Logic

So far, we have analyzed So far, we have analyzed sequential sequential programs onlyprograms only, y, y qq p g yp g y
assertassert is a convenient way of specify requirement propertiesis a convenient way of specify requirement properties
SafetySafety properties are enough for sequential programsproperties are enough for sequential programs

“Bad thing never happens”“Bad thing never happens”Bad thing never happensBad thing never happens
Ex. Ex. Mutual exclusionMutual exclusion

For concurrent programs, we need more than For concurrent programs, we need more than assertassert to specify to specify
i t t i t ti i tli t t i t ti i tlimportant requirement properties convenientlyimportant requirement properties conveniently

LivenessLiveness propertiesproperties
“Good thing eventually happens”“Good thing eventually happens”
Ex. Deadlock freedomEx. Deadlock freedom
Ex. Starvation freedomEx. Starvation freedom

Temporal logic Temporal logic is an adequate logic for describing requirement is an adequate logic for describing requirement p gp g q g g qq g g q
properties for concurrent systemproperties for concurrent system

3

Motivating Example (1/2)Motivating Example (1/2)

Mutual Mutual exclusion protocol exclusion protocol
Alice and Bob are neighbors and they share a yardAlice and Bob are neighbors and they share a yard

Quoted from “The art of multiprocessor
programing” by M.Herlihy et al,
published by Morgan Kaufmann 2008

Alice and Bob are neighbors, and they share a yard. Alice and Bob are neighbors, and they share a yard.
Alice owns a cat and Bob owns a dog. Alice owns a cat and Bob owns a dog.
Alice and Bob should coordinate that both pets are never in the Alice and Bob should coordinate that both pets are never in the
yard at the same time.yard at the same time.

We would like to design a mutual exclusion protocol to We would like to design a mutual exclusion protocol to
satisfysatisfysatisfysatisfy

1.1. Mutual exclusionMutual exclusion
pets are excluded from being in the yard at the same timepets are excluded from being in the yard at the same timep g yp g y

2.2. DeadlockDeadlock--freedomfreedom
Both pets want to enter the yard, then Both pets want to enter the yard, then eventuallyeventually at leas one of at leas one of
them succeedsthem succeedsthem succeedsthem succeeds

3.3. StarvationStarvation--freedom/lockfreedom/lock--out freedomout freedom
If a pet wants to enter the yard, it will If a pet wants to enter the yard, it will eventuallyeventually succeedsucceed 4

Motivating Example (2/2)Motivating Example (2/2)

One protocol design: Alice and Bob set up a flag pole at One protocol design: Alice and Bob set up a flag pole at
h hh heach houseeach house

Protocol @ AliceProtocol @ Alice
1.1. Alice raises her flagAlice raises her flag1.1. Alice raises her flagAlice raises her flag
2.2. When Bob’s flag is lowered, she unleashes her catWhen Bob’s flag is lowered, she unleashes her cat
3.3. When her cat comes back, she lowers her flagWhen her cat comes back, she lowers her flag

P t l @ B bP t l @ B bProtocol @ BobProtocol @ Bob
1.1. He raises his flagHe raises his flag
2.2. While Alice’s flag is raisedWhile Alice’s flag is raised

1.1. Bob lowers his flagBob lowers his flag
2.2. Bob waits until Alice’s flag is loweredBob waits until Alice’s flag is lowered
3.3. Bob raises his flagBob raises his flag

3.3. As soon as his flag is raised and hers is down, he unleashes his dogAs soon as his flag is raised and hers is down, he unleashes his dog
4.4. When his dog comes back, he lowers his flagWhen his dog comes back, he lowers his flag

5

Linear time temporal logic (LTL)Linear time temporal logic (LTL)

LTL models time as LTL models time as a sequence of statesa sequence of states, extending , extending
i fi it l i t thi fi it l i t th f tf tinfinitely into the infinitely into the futurefuture

sometimes a sequence of states is called sometimes a sequence of states is called a a
computation pathcomputation path or or an execution pathan execution path, or simply , or simply a patha path →→

F p → G r Ç ¬ q U p

Def 3.1 LTL has the following syntaxDef 3.1 LTL has the following syntax
φφ ::= T | ::= T | ⊥⊥ | p | | p | ¬¬ φφ | | φφ ÆÆ φφ | | φφ ÇÇ φφ | | φφ→→ φ φ

| X | X φφ | F | F φφ | G | G φφ | | φφ U U φφ | | φφ W W φφ | | φφ R R φφ

ÇÇFF

|| φφ || φφ || φφ || φφ φφ || φφ φφ || φφ φφ

where p is any propositional atom from some set Atomswhere p is any propositional atom from some set Atoms
Operator precedenceOperator precedence

the unary connectives bind most tightly Next in the orderthe unary connectives bind most tightly Next in the order

pp GG

rr ¬¬

UU

ppthe unary connectives bind most tightly. Next in the order the unary connectives bind most tightly. Next in the order
come U, R, W, come U, R, W, ÆÆ, , ÇÇ, and , and →→

rr ¬¬

qq

pp

6

Semantics of LTL (1/3)Semantics of LTL (1/3)

Def 3.4 A transition system (called model) Def 3.4 A transition system (called model) MM = (S, = (S, →→, L), L)
a set of statesa set of states SSa set of states a set of states SS
a transition relation a transition relation →→ (a binary relation on S)(a binary relation on S)

such that every s such that every s ∈∈ S has some s’ S has some s’ ∈∈ S with s S with s →→ s’ s’
a labeling functiona labeling function LL: S: S →→ PP (Atoms)(Atoms)a labeling function a labeling function LL: S : S →→ PP (Atoms)(Atoms)

ExampleExample
S={sS={s00,s,s11,s,s22}}
→→={(s={(s00,s,s11),(s),(s11,s,s00),(s),(s11,s,s22),(s),(s00,s,s22),(s),(s22,s,s22)})}→→ {(s{(s00,s,s11),(s),(s11,s,s00),(s),(s11,s,s22),(s),(s00,s,s22),(s),(s22,s,s22)})}
L={(sL={(s00,{p,q}),(s,{p,q}),(s11,{q,r}), (s,{q,r}), (s22,{r})},{r})}

Def. 3.5 A Def. 3.5 A pathpath in a model in a model MM = (S, = (S, →→, L) is , L) is an infinite sequence of an infinite sequence of
statesstates ssii11

, s, sii22
, s, sii33

,… in S s.t. for each j,… in S s.t. for each j≥≥ 1, s1, siijj
→→ ssiij+1j+1

. We write the . We write the ii11 ii22 ii33
jj iijj iij+1j+1path as spath as sii11

→ → ssii22
→→ ……

From now on if there is no confusion, we drop the subscript index i for From now on if there is no confusion, we drop the subscript index i for
the sake of simple descriptionthe sake of simple description

We writeWe write ii for the suffix of a path starting at sfor the suffix of a path starting at s

7

We write We write ππii for the suffix of a path starting at sfor the suffix of a path starting at si. i.
ex. ex. ππ33 is sis s33 →→ ss44 →→ ……

Semantics of LTL (2/3)Semantics of LTL (2/3)
D f 3 6 L tD f 3 6 L t MM (S(S L) b d l dL) b d l d bbDef 3.6 Let Def 3.6 Let MM = (S, = (S, →→, L) be a model and , L) be a model and ππ = s= s11 →→ … be a … be a
path in path in MM. Whether . Whether ππ satisfies an LTL formula is defined by satisfies an LTL formula is defined by
the satisfaction relation the satisfaction relation ²² as follows:as follows:

Basics: Basics: π π ²²>>, , π π 22⊥⊥,, ππ ²²p p iffiff p p ∈∈ L(sL(s11) ,) , ππ ² ² ¬¬φφ iffiff ππ 22 φφ
Boolean operators: Boolean operators: ππ ² ² p p ÆÆ q q iffiff ππ ² ² p and p and ππ ² ² qq

similar for other similar for other booleanboolean binary operatorsbinary operators
ππ ² ² XX φφ iffiff ππ22 ²² φ φ ((next next ○○))
ππ ² ² GG φφ iffiff for all for all ii ≥≥ 1, 1, ππii ²² φ φ ((always always))
ππ ² ² FF φφ iffiff there is some there is some ii ≥≥ 1, 1, ππii ²² φ φ ((eventually eventually ♦♦))φφ ≥≥ ,, φφ ((yy ♦♦))
ππ ² ² φ φ UU ψψ iffiff there is some there is some ii ≥≥ 1s.t. 1s.t. ππii ²² ψψ and for all j=1,…,and for all j=1,…,ii--11 we have we have
ππjj ²² φ φ ((strong until)strong until)
ππ ² ² φ φ WW ψψ iffiff either (either (weak untilweak until))φφ ψψ (())

either there is some either there is some ii ≥≥ 1 1 s.ts.t. . ππii ²² ψψ and for all j=1,…,and for all j=1,…,ii--11 we have we have ππjj ²² φφ
or for all k or for all k ≥≥ 1 we have 1 we have ππkk ²² φ φ

ππ ² ² φ φ RR ψψ iffiff either (either (releaserelease))

8

either there is some either there is some ii ≥≥ 1 1 s.ts.t. . ππii ²² φφ and for all j=1,…,and for all j=1,…,ii we have we have ππjj ²² ψψ
or for all k or for all k ≥≥ 1 we have 1 we have ππkk ²² ψψ

9slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann

10slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann

11slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann

12slide quoted from Caltech 101b.2 “Logic Model Checking” by Dr.G.Holzmann

Semantics of LTL (3/3)Semantics of LTL (3/3)
Def 3 8 SupposeDef 3 8 Suppose MM = (S= (S →→ L) is a model sL) is a model s ∈∈ S andS and φφDef 3.8 Suppose Def 3.8 Suppose MM = (S, = (S, →→, L) is a model, s , L) is a model, s ∈∈ S, and S, and φφ
an LTL formula. We write an LTL formula. We write MM,s ,s ²² φφ if if for every executionfor every execution
path path ππ of of MM starting at s, we have starting at s, we have ππ ²² φφ

IfIf MM is clear from the context we writeis clear from the context we write ss ²² φφ
MM

If If MM is clear from the context, we write is clear from the context, we write s s ²² φφ

ExampleExample
ss00 ²² p p ÆÆ q since q since ππ ²² p p ÆÆ q for every path q for every path ππ beginning in sbeginning in s00
ss00 ²² ¬¬r, sr, s00 ²² >>

ss00 ²² X r, sX r, s00 22 X (q X (q ÆÆ r)r)
ss00 ² ² G G ¬¬(p (p ÆÆ r), sr), s22 ² ² G rG r
For any s of For any s of MM, s , s ²² F(F(¬¬q q ÆÆ r) r) →→ F G rF G r

Note that sNote that s22 satisfies satisfies ¬¬q q ÆÆ rr
ss00 22 G F pG F p

ss00 →→ ss11 →→ ss00 →→ ss11 … … ²² G F pG F p
ss00 →→ ss22 →→ ss22 →→ ss2 2 … … 22 G F pG F p

ss00 ²² G F p G F p →→ G F rG F r

13

ss00 22 G F r G F r →→ G F pG F p

Practical patterns of specificationPractical patterns of specification
For any state, if a request occurs, then it For any state, if a request occurs, then it
will eventually be acknowledgewill eventually be acknowledge

G(requested G(requested →→ F acknowledged)F acknowledged)
A t i i bl d i fi it lA t i i bl d i fi it l

It is impossible to get to a state where a It is impossible to get to a state where a
system has started but is not readysystem has started but is not ready

φφ = G = G ¬¬(started (started ÆÆ ¬¬ready)ready)
What is the meaning of (intuitive)What is the meaning of (intuitive)A certain process is enabled infinitely A certain process is enabled infinitely

often on every computation pathoften on every computation path
G F enabledG F enabled

Whatever happens, a certain processWhatever happens, a certain process

What is the meaning of (intuitive) What is the meaning of (intuitive)
negation of negation of φφ ??

For every path, it is possible to get to For every path, it is possible to get to
such a state (startedsuch a state (startedÆ¬Æ¬ready).ready).
There exists a such path that gets toThere exists a such path that gets toWhatever happens, a certain process Whatever happens, a certain process

will eventually be permanently will eventually be permanently
deadlockeddeadlocked

F G deadlockF G deadlock
If the process is enabled infinitely oftenIf the process is enabled infinitely often

There exists a such path that gets to There exists a such path that gets to
such a state.such a state.

we cannot express this meaning directlywe cannot express this meaning directly

LTL has LTL has limited expressive powerlimited expressive power
For example LTLFor example LTL cannotcannot expressexpressIf the process is enabled infinitely often, If the process is enabled infinitely often,

then it runs infinitely oftenthen it runs infinitely often
G F enabled G F enabled →→ G F runningG F running

An upwards traveling lift at the second An upwards traveling lift at the second

For example, LTL For example, LTL cannotcannot express express
statements which assert statements which assert the existence the existence
of a pathof a path

From any state s, there From any state s, there exists a path exists a path ππ
starting from s to get to a restart statestarting from s to get to a restart statep gp g

floor does not change its direction when floor does not change its direction when
it has passengers wishing to go to the it has passengers wishing to go to the
fifth floorfifth floor

G (fllor2 G (fllor2 ÆÆ directionup directionup ÆÆ ButtonPressed5 ButtonPressed5

The lift The lift can remain idlecan remain idle on the third floor on the third floor
with its doors closedwith its doors closed

Computation Tree Logic (CTL)Computation Tree Logic (CTL) has has
operators for quantifying over paths and operators for quantifying over paths and
can express these propertiescan express these properties

14

((ÆÆ pp ÆÆ
→→ (directionup U floor5)(directionup U floor5) can express these propertiescan express these properties

Summary of practical patternsSummary of practical patterns
G pG p always palways p invarianceinvariance

FF t llt ll ttF pF p eventually peventually p guaranteeguarantee

p p →→ (F q)(F q) p implies eventually qp implies eventually q responseresponse

p p →→ (q U r)(q U r) p implies q until rp implies q until r precedenceprecedence

G F pG F p always, eventually palways, eventually p recurrence recurrence
(progress)(progress)

F G pF G p eventually, always peventually, always p stability (nonstability (non--
progress)progress)

F pF p →→ F qF q eventually p implies eventually qeventually p implies eventually q correlationcorrelation

15

F p F p →→ F qF q eventually p implies eventually qeventually p implies eventually q correlationcorrelation

Equivalences between LTL formulasEquivalences between LTL formulas

Def 3.9 Def 3.9 φφ ≡≡ ψ ψ if for if for allall models models MM and and allall paths paths ππ in in MM: : ππ ²² φφ iff iff ππ ²² ψψ

¬¬G G φφ ≡≡ F F ¬¬φφ, , ¬¬F F φφ ≡≡ G G ¬¬φφ, , ¬¬X X φφ ≡≡ X X ¬¬φφ
¬¬ ((φφ U U ψψ)) ≡≡ ¬¬φφ R R ¬¬ψψ, , ¬¬((φφ R R ψψ)) ≡≡ ¬¬φφ U U ¬¬ψψ
F (F (φφ ÇÇ ψψ)) ≡≡ F F φφ ÇÇ F F ψψ
G (G (φφ ÆÆ ψψ)) ≡≡ G G φφ ÆÆ G G ψψ
FF φ φ ≡≡ T UT U φφ GG φφ ≡≡ ⊥ ⊥ RR φφF F φ φ ≡≡ T U T U φφ, G , G φφ ≡≡ ⊥ ⊥ RR φφ

φφ U U ψψ ≡≡ φφ W W ψψ ÆÆ F F ψψ
φφ W W ψψ ≡≡ φφ U U ψψ Ç Ç G G φ φ

φφ W W ψψ ≡≡ ψψ R (R (φφ ÇÇ ψψ))
φφ R R ψψ ≡≡ ψψ W (W (φ φ ÆÆ ψψ))

16

Adequate sets of connectives for LTL (1/2)Adequate sets of connectives for LTL (1/2)

X is completely orthogonal to the other connectivesX is completely orthogonal to the other connectives
X does not help in defining any of the other connectives.X does not help in defining any of the other connectives.
The other way is neither possibleThe other way is neither possible

Each of the sets {U,X}, {R,x}, {W,X} is adequateEach of the sets {U,X}, {R,x}, {W,X} is adequateEach of the sets {U,X}, {R,x}, {W,X} is adequateEach of the sets {U,X}, {R,x}, {W,X} is adequate
{U,X}{U,X}

φφ R R ψψ ≡≡ ¬¬ ((¬¬ φφ U U ¬¬ ψψ))
φφ W W ψψ ≡≡ ψψ R (R (φφ ÇÇ ψψ)) ≡≡ ¬¬ ((¬¬ψψ U U ¬¬((φφ ÇÇ ψψ))))φφ ψψ ψψ ((φφ ψψ)) ((ψψ ((φφ ψψ))))

{R,X}{R,X}
φφ U U ψψ ≡≡ ¬¬ ((¬¬φφ R R ¬¬ψψ))
φφ W W ψψ ≡≡ ψψ R (R (φφ ÇÇ ψψ))

{W,X}{W,X}
φφ U U ψψ ≡≡ ¬¬ ((¬¬ φφ R R ¬¬ ψψ))
φφ R R ψψ ≡≡ ψψ W (W (φ φ ÆÆ ψψ))

17

Adequate sets of connectives for LTL (2/2)Adequate sets of connectives for LTL (2/2)

Thm 4.10 Thm 4.10 φφ U U ψψ ≡≡ ¬¬((¬¬ψψ U (U (¬¬φφ ÆÆ ¬¬ψψ)))) ÆÆ F F ψψ
Proof: take any path sProof: take any path s00 →→ ss11 →→ ss22 →→ in any modelin any modelProof: take any path sProof: take any path s00 →→ ss11 →→ ss22 →→ … in any model… in any model

Suppose sSuppose s00 ²² φφ U U ψψ
Let Let n n be the be the smallestsmallest numbernumber s.t. ss.t. snn ²² ψψ

We know that such n exists from We know that such n exists from φφ U U ψψ. Thus, s. Thus, s00 ²² F F ψψφφ ψψ ,, 00 ψψ

For each k < n, sFor each k < n, skk ² ² φ φ since since φφ U U ψψ
We need to show sWe need to show s00 ²² ¬¬((¬¬ψψ U (U (¬¬φφ ÆÆ ¬¬ψψ))))

case 1: for all i, scase 1: for all i, sii 22 ¬¬φφ ÆÆ ¬¬ψψ. . Then, sThen, s00 ²² ¬¬((¬¬ψψ U (U (¬¬φφ ÆÆ ¬¬ψψ))))
case 2: for some i scase 2: for some i s ²² φφ ÆÆ ψψ Then we need to showThen we need to showcase 2: for some i, scase 2: for some i, sii ²² ¬¬φφ ÆÆ ¬¬ψψ. Then, we need to show. Then, we need to show

(*)(*)for each i >0, if sfor each i >0, if sii ²² ¬¬φφ ÆÆ ¬¬ψψ, then there is some j < i with s, then there is some j < i with sjj 22 ¬¬ψ ψ (i.e. s(i.e. sjj ²² ψψ))
Take any i >0 with sTake any i >0 with sii ²² ¬¬φφ ÆÆ ¬¬ψψ. We know that i > n since s. We know that i > n since s00 ²² φφ U U ψψ. So we can . So we can
take j=n and have stake j=n and have sjj ²² ψψ

Conversely, suppose sConversely, suppose s00 ²² ¬¬((¬¬ψψ U (U (¬¬φφ ÆÆ ¬¬ψψ)))) ÆÆ F F ψψ
SinceSince ss00 ²² FF ψψ, we have a minimal , we have a minimal nn as before s.t. sas before s.t. snn ²² ψψ

case 1: for all i, scase 1: for all i, sii 22 ¬¬φφ ÆÆ ¬¬ψψ (i.e. s(i.e. sii ²² φφ ÇÇ ψψ). Then s). Then s00 ²² φφ U U ψψ
case 2: for some i scase 2: for some i s ²² φφ ÆÆ ψψ We need to prove for any i <n sWe need to prove for any i <n s ²² φφ

18

case 2: for some i, scase 2: for some i, sii ²² ¬¬φφ ÆÆ ¬¬ψψ. We need to prove for any i <n, s. We need to prove for any i <n, sii ²² φφ

Suppose sSuppose sii 22 φφ (i.e., s(i.e., sii ²² ¬¬φφ). Since n is minimal, we know s). Since n is minimal, we know sii ²² ¬¬ψψ. So by . So by (*)(*)
there is some there is some jj <i<n with s<i<n with sjj ²² ψψ, contradicting the , contradicting the minimalityminimality of of nn. . ContradictionContradiction

Mutual exclusion exampleMutual exclusion example

When concurrent processes share a resource, it may be When concurrent processes share a resource, it may be
necessary to ensure that they donecessary to ensure that they do notnot have access to thehave access to thenecessary to ensure that they do necessary to ensure that they do notnot have access to the have access to the
common resource common resource at the same timeat the same time

We need to build a protocol which allows only one process to We need to build a protocol which allows only one process to
enterenter critical sectioncritical sectionenter enter critical sectioncritical section

Requirement propertiesRequirement properties
Safety: Safety:

O l i i it iti l ti t tiO l i i it iti l ti t tiOnly one process is in its critical section at anytimeOnly one process is in its critical section at anytime
LivenessLiveness: :

Whenever any process requests to enter its critical section, it Whenever any process requests to enter its critical section, it
ill e ent all be permitted to do soill e ent all be permitted to do sowill eventually be permitted to do sowill eventually be permitted to do so

NonNon--blocking: blocking:
A process can always request to enter its critical sectionA process can always request to enter its critical section

N t i t iN t i t i

19

No strict sequencing:No strict sequencing:
processes need not enter their critical section in strict processes need not enter their critical section in strict
sequencesequence

11stst model model
W d l tW d l tWe model two processesWe model two processes

each of which is in each of which is in
nonnon--critical state (critical state (nn) or) ornonnon critical state (critical state (nn) or) or
trying to enter its critical state trying to enter its critical state
((tt) or) or
critical section (critical section (cc))critical section (critical section (cc))

No self edgesNo self edges
each process executes like each process executes like pp
nn→→ t t →→ c c →→ n n →→ ……

but the two processes but the two processes interleaveinterleave
with each otherwith each otherwith each otherwith each other

only one of the two only one of the two
processes can make a processes can make a
transition at a timetransition at a time

20

transition at a time transition at a time
((asynchronous interleavingasynchronous interleaving))

11stst model for mutual exclusionmodel for mutual exclusion

Safety: sSafety: s00 ²² G G ¬¬ (c(c11 ÆÆ cc22))
Liveness sLiveness s00 22 G(tG(t11 →→ F cF c11))Liveness sLiveness s00 22 G(tG(t11 →→ F cF c11))

see ssee s00→→ss11→→ss33→→ss77→→ss11→→ss33 →→ss77……
NonNon--blockingblocking

for every state satisfying nfor every state satisfying niifor every state satisfying nfor every state satisfying nii, ,
there there is ais a successor satisfying tsuccessor satisfying tii

ss00 satisfies this propertysatisfies this property
We We cannotcannot express this property express this property p p p yp p p y
in LTL but in CTLin LTL but in CTL

Note that LTL specifies that Note that LTL specifies that φφ is satisfied is satisfied for all pathsfor all paths
No strict orderingNo strict ordering

there is a path where cthere is a path where c11 and cand c22 do not occur in strict order do not occur in strict order
Complement of this isComplement of this is

G(G(cc11 →→ cc11 W (W (¬¬cc11 ÆÆ ¬¬cc11 W cW c22))))
anytime we get into aanytime we get into a cc state eitherstate either that conditionthat condition persists indefinitely or it endspersists indefinitely or it ends

21

anytime we get into a anytime we get into a cc11 state, either state, either that conditionthat condition persists indefinitely, or it ends persists indefinitely, or it ends
with a with a nonnon--cc11 state and in that case there is state and in that case there is no further cno further c11 statestate unless and until we unless and until we
obtain a obtain a cc22 statestate

2nd model for mutual exclusion2nd model for mutual exclusion

All 4 ti ti fi dAll 4 ti ti fi dAll 4 properties are satisfiedAll 4 properties are satisfied
SafetySafety
LivenessLivenessLivenessLiveness
NonNon--blockingblocking
No strict sequencingNo strict sequencing

22

NuSMV model checkerNuSMV model checker

NuSMV programs consist of one or moreNuSMV programs consist of one or more modulesmodules..NuSMV programs consist of one or more NuSMV programs consist of one or more modulesmodules..
one of the modules must be called mainone of the modules must be called main

Modules can declare Modules can declare variablesvariables and assign to them.and assign to them.gg
AssignmentsAssignments usually give the initial value of a variable xusually give the initial value of a variable x
((init(x)init(x)) and its next value () and its next value (next(xnext(x)) as an expression in)) as an expression in
terms of the current values of variables.terms of the current values of variables.

this expression can be this expression can be nonnon--deterministicdeterministic

d t d b l i i bd t d b l i i bdenoted by several expressions in braces, or no denoted by several expressions in braces, or no
assignment at allassignment at all

23

ExampleExample
requestrequest is underis under--specified, i.e., specified, i.e.,
not controlled by the programnot controlled by the program

request is determined (randomly)request is determined (randomly)

MODULE mainMODULE main
VARVAR

request is determined (randomly) request is determined (randomly)
by external environmentby external environment
thus, whole program works thus, whole program works nonnon--

requestrequest: boolean;: boolean;
status: {ready,busy};status: {ready,busy};

ASSIGNASSIGN deterministicallydeterministically

Case statement is evaluated Case statement is evaluated
toptop toto bottombottom

ASSIGNASSIGN
init(status) := ready;init(status) := ready;
next(status) := casenext(status) := case toptop--toto--bottombottom()()

request : busy;request : busy;
1: {ready,busy};1: {ready,busy};
esac;esac;

LTLSPECLTLSPEC
G(requestG(request --> F status=busy)> F status=busy)

24

G(request G(request --> F status=busy)> F status=busy)

Modules in NuSMVModules in NuSMV

A A modulemodule is instantiated when a variable is instantiated when a variable
having that module name as its type is having that module name as its type is
declared.declared.
A 3 bit counter increases from 000 to 111 A 3 bit counter increases from 000 to 111
repeatedlyrepeatedlyrepeatedlyrepeatedly

Req. propertyReq. property
infinitely setting carryinfinitely setting carry--out of most significant out of most significant
bit as 1bit as 1

By default, modules in By default, modules in NuSMVNuSMV are are
composed composed synchronouslysynchronously

there is a global clock and, each time it there is a global clock and, each time it
ticks each of the modules executes inticks each of the modules executes inticks, each of the modules executes in ticks, each of the modules executes in
parallelparallel
By use of the ‘By use of the ‘processprocess’ keyword, it is ’ keyword, it is
possible to compose the modules possible to compose the modules

25

asynchronouslyasynchronously

