
I t d ti t S ft T tiI t d ti t S ft T tiIntroduction to Software TestingIntroduction to Software Testing
Chapter 2.3Chapter 2.3Chapter 2.3Chapter 2.3

Graph Coverage for Source CodeGraph Coverage for Source Code

Paul Paul AmmannAmmann & Jeff Offutt& Jeff Offutt

OverviewOverviewOverviewOverview
The most common application of graph criteria is toThe most common application of graph criteria is toThe most common application of graph criteria is to The most common application of graph criteria is to
program program sourcesource
GraphGraph : Usually the control flow graph (CFG): Usually the control flow graph (CFG)GraphGraph : Usually the control flow graph (CFG): Usually the control flow graph (CFG)
Node coverageNode coverage : Execute every : Execute every statementstatement
Edge coverageEdge coverage : Execute every : Execute every branchbranch
LoopsLoops : Looping structures such as for loops, while : Looping structures such as for loops, while pp p g p ,p g p ,
loops, etc.loops, etc.
Data flow coverageData flow coverage : Augment the CFG: Augment the CFGData flow coverageData flow coverage : Augment the CFG: Augment the CFG

defsdefs are statements that assign values to variablesare statements that assign values to variables
usesuses are statements that use variablesare statements that use variablesusesuses are statements that use variablesare statements that use variables

2

Control Flow Graphsp

A CFG models all executions of a method by describing control
structures
Nodes : Statements or sequences of statements (basic blocks)
Edges : Transfers of controlEdges : Transfers of control
Basic Block : A sequence of statements such that if the first
statement is executed, all statements will be (no branches)

CFGs are sometimes annotated with extra information
branch predicatesbranch predicates
defs
uses

Rules for translating statements into graphs …

3

CFG : The if StatementCFG : The if StatementCFG : The if StatementCFG : The if Statement
if (x < y)
{{

y = 0;
x = x + 1;

1
x >= yx < y

}
else
{

2 3 x = y
y = 0

x = x + 1

{
x = y;

}
4

if ()if (x < y)
{

y = 0;

1

2
x >= y

x < y
y = 0

x = x + 1;
}

3

2x = x + 1

4

3

CFG : The ifCFG : The if Return StatementReturn StatementCFG : The ifCFG : The if--Return StatementReturn Statement

if ()if (x < y)
{

return;
1

x < y
}
print (x);
return;

2
x >= yreturn

;
3 print (x)

return

No edge from node 2 to 3.
The return nodes must be distinct.

5

LoopsLoopsLoopsLoops

Loops require “Loops require “extraextra” nodes to be added” nodes to be added

Nodes that Nodes that do notdo not represent statements or basic blocksrepresent statements or basic blocks

6

CFG : while and for LoopsCFG : while and for Loopspp

x = 0; 1x = 0

while (x < y)
{

y = f (x, y); x >= yx < y
2

dummy node

implicitly y (, y);
x = x + 1;

} 43
y =f(x,y)

x >= yx < y 1x = 0
p y

initializes loop

y (,y)
x = x + 1

for (x = 0; x < y; x++)

2

3 5

x >= yx < y

f (){
y = f (x, y);

}
1

3 5y = f (x, y)

4
}

x = x + 14

implicitly

7

implicitly
increments loop

CFG : The case (switch) StructureCFG : The case (switch) StructureCFG : The case (switch) StructureCFG : The case (switch) Structure

d ()read (c) ;
switch (c)
{

case ‘N’:
y = 25;
break;

1 read (c);

c == ‘N’
c == ‘Y’ default;

case ‘Y’:
y = 50;
break;

y = 0;
break;

2 43
y = 50;

y = 25;
break;break;

default:
y = 0;
break;

5

break;
break;

break;

print (y);break;
}
print (y);

print (y);

8

Example Control Flow Example Control Flow –– StatsStats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

b [i]sum += numbers [i];
}
med = numbers [length / 2];
mean = sum / (double) length;

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [I] mean) * (numbers [I] mean));varsum = varsum + ((numbers [I] - mean) (numbers [I] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);

9

System.out.println (variance: var);
System.out.println ("standard deviation: " + sd);

}

Control Flow Graph for StatsControl Flow Graph for Stats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

1

sum = 0;
for (int i = 0; i < length; i++)
{

b [i]

i = 02
sum += numbers [i];

}
med = numbers [length / 2];
mean = sum / (double) length; i >= length3
varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [I] mean) * (numbers [I] mean));

i < length
i++

5
4

varsum = varsum + ((numbers [I] - mean) (numbers [I] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

i = 0
5

6
System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);

i >= length
i < length

6

10

System.out.println (variance: var);
System.out.println ("standard deviation: " + sd);

} i++
87

Control Flow TRs and Test Paths Control Flow TRs and Test Paths –– ECEC
1

2 TR
A [1 2]

Test Path
[1 2 3 4 3 5 6 7 6 8]

Edge Coverage

3

A. [1, 2]
B. [2, 3]
C [3 4]

[1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

5
4

C. [3, 4]
D. [3, 5]
E. [4, 3]

6

[]
F. [5, 6]
G. [6, 7]
H [6 8]6 H. [6, 8]
I. [7, 6]

11

87

Control Flow TRs and Test Paths Control Flow TRs and Test Paths –– EPCEPC
1

TR T P h
Edge-Pair Coverage

2

TR
A. [1, 2, 3]
B [2 3 4]

Test Paths
i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
ii [1 2 3 5 6 8]

3

B. [2, 3, 4]
C. [2, 3, 5]
D. [3, 4, 3]

ii. [1, 2, 3, 5, 6, 8]
iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7,

6, 7, 6, 8]

i A B D E F G I J C H5
4

E. [3, 5, 6]
F. [4, 3, 5]
G [5 6 7]

TP TRs toured sidetrips

i A, B, D, E, F, G, I, J C, H

6

G. [5, 6, 7]
H. [5, 6, 8]
I [6 7 6]

ii A, C, E, H

iii A, B, D, E, F, G, I, C, H6 I. [6, 7, 6]
J. [7, 6, 8]
K. [4, 3, 4]

iii A, B, D, E, F, G, I,
J, K, L

C, H

12

87 L. [7, 6, 7]

Control Flow TRs and Test Paths Control Flow TRs and Test Paths –– PPCPPC

1 TR Test Paths
Prime Path Coverage

2
A. [3, 4, 3]
B. [4, 3, 4]
C [7 6 7]

i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]
ii. [1, 2, 3, 4, 3, 4, 3,

5 6 7 6 7 6 8]

3

C. [7, 6, 7]
D. [7, 6, 8]
E. [6, 7, 6]

5, 6, 7, 6, 7, 6, 8]
iii. [1, 2, 3, 4, 3, 5, 6, 8]
iv. [1, 2, 3, 5, 6, 7, 6, 8]

5
4

[, ,]
F. [1, 2, 3, 4]
G. [4, 3, 5, 6, 7]

[, , , , , , ,]
v. [1, 2, 3, 5, 6, 8]

TP TRs toured sidetrips

6

H. [4, 3, 5, 6, 8]
I. [1, 2, 3, 5, 6, 7]
J [1 2 3 5 6 8]

i A, D, E, F, G H, I, J
TP TRs toured sidetrips

ii A, B, C, D, E, F, G, H, I, J6 J. [1, 2, 3, 5, 6, 8] , , , , , , , , ,

iii A, F, H J

iv D, E, F, I J

13

87 v J

Data Flow Coverage for SourceData Flow Coverage for Source

defdef : a location where a value is stored into memory: a location where a value is stored into memory
x appears on the left side of an assignment (x = 44;)x appears on the left side of an assignment (x = 44;)
x is an actual parameter in a call and the method changes its valuex is an actual parameter in a call and the method changes its value
x is a formal parameter of a method (implicit def when method starts)x is a formal parameter of a method (implicit def when method starts)x is a formal parameter of a method (implicit def when method starts)x is a formal parameter of a method (implicit def when method starts)
x is an input to a programx is an input to a program

useuse : a location where variable’s value is accessed: a location where variable’s value is accessed
x appears on the right side of an assignmentx appears on the right side of an assignment
x appears in a conditional testx appears in a conditional test
x is an actual parameter to a methodx is an actual parameter to a methodpp
x is an output of the programx is an output of the program
x is an output of a method in a return statementx is an output of a method in a return statement

If a def and a se appear on theIf a def and a se appear on the same nodesame node then it is onl a DUthen it is onl a DU pairpairIf a def and a use appear on the If a def and a use appear on the same nodesame node, then it is only a DU, then it is only a DU--pair pair
if the def occurs if the def occurs afterafter the use and the node is in a loopthe use and the node is in a loop

14

Example Data Flow Example Data Flow –– StatsStats
public static void computeStats (int [] numbers)
{

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int i = 0; i < length; i++)
{

b [i]sum += numbers [i];
}
mean = sum / (double) length;
med = numbers [length / 2];

varsum = 0;
for (int i = 0; i < length; i++)
{

varsum = varsum + ((numbers [i] mean) * (numbers [i] mean));varsum = varsum + ((numbers [i] - mean) (numbers [i] - mean));
}
var = varsum / (length - 1.0);
sd = Math.sqrt (var);

System.out.println ("length: " + length);
System.out.println ("mean: " + mean);
System.out.println ("median: " + med);
System.out.println ("variance: " + var);

15

System.out.println (variance: var);
System.out.println ("standard deviation: " + sd);

}

Control Flow Graph for Stats Control Flow Graph for Stats
1

(numbers)
sum = 0
length = numbers.length

2 i = 0

3 i >= length

4 5

i < length
mean = sum / (double) length;
med = numbers [length / 2]4 5

6

sum += numbers [i]
i++

varsum = 0
i = 0

6 i >= length

i < length
var = varsum / (length - 1.0)
d M th t ()

16

87varsum = …
i++

sd = Math.sqrt (var)
print (length, mean, med,
var, sd)

CFG for Stats CFG for Stats –– With With DefsDefs & Uses& Uses
1 def (1) = { numbers, sum, length }

2 def (2) = { i }

3 use (3, 5) = { i, length }

4 5
def (5) = { mean, med, varsum, i }
use (5) = { numbers length sum }

use (3, 4) = { i, length }

4 5

6

use (5) = { numbers, length, sum }
def (4) = { sum, i }
use (4) = { sum, numbers, i }

(6 8) { i l th }6

def (8) = { var, sd }
(8) { l th

use (6, 8) = { i, length }

use (6, 7) = { i, length }

17

87 use (8) = { varsum, length, mean,
med, var, sd }

def (7) = { varsum, i }
use (7) = { varsum, numbers, i, mean }

DefsDefs and Uses Tables for Stats and Uses Tables for Stats
Node Def Use

1 { b

Edge Use

(1 2)1 { numbers, sum,
length }

2 { i }

(1, 2)
(2, 3)

(3 4) { i length }
3
4 { sum, i } { numbers, i, sum }
5 { mean med { numbers length sum }

(3, 4) { i, length }
(4, 3)

(3, 5) { i, length }5 { mean, med,
varsum, i }

{ numbers, length, sum }

6

(,) { , g }

(5, 6)

(6, 7) { i, length }
7 { varsum, i } { varsum, numbers, i,

mean }
8 { var, sd } { varsum, length, var,

() { g }

(7, 6)
(6, 8) { i, length }

mean, med, var, sd }

18

DU Pairs for Stats DU Pairs for Stats
variable DU Pairs

numbers (1 4) (1 5) (1 7)

defs come before uses, do
not count as DU pairs

numbers (1, 4) (1, 5) (1, 7)
length (1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))
med (5 8)med (5, 8)
var (8, 8)
sd (8, 8)

defs after use in loop,
these are valid DU pairs

mean (5, 7) (5, 8)
sum (1, 4) (1, 5) (4, 4) (4, 5)

(5 7) (5 8) (7 7) (7 8)

No def-clear path …
different scope for i

varsum (5, 7) (5, 8) (7, 7) (7, 8)
i (2, 4) (2, (3,4)) (2, (3,5)) (2, 7) (2, (6,7)) (2, (6,8))

(4 4) (4 (3 4)) (4 (3 5)) (4 7) (4 (6 7)) (4 (6 8))

p

(4, 4) (4, (3,4)) (4, (3,5)) (4, 7) (4, (6,7)) (4, (6,8))
(5, 7) (5, (6,7)) (5, (6,8))
(7, 7) (7, (6,7)) (7, (6,8)) No path through graph from

d 5 d 7 t 4 3

19

nodes 5 and 7 to 4 or 3

DU Paths for StatsDU Paths for Stats
ariable DU Pairs DU Paths ariable DU Pairs DU Pathsvariable DU Pairs DU Paths

numbers (1, 4)
(1, 5)
(1 7)

[1, 2, 3, 4]
[1, 2, 3, 5]
[1 2 3 5 6 7]

variable DU Pairs DU Paths
mean (5, 7)

(5, 8)
[5, 6, 7]
[5, 6, 8]

(1, 7) [1, 2, 3, 5, 6, 7]

length (1, 5)
(1, 8)

[1, 2, 3, 5]
[1, 2, 3, 5, 6, 8]

varsum (5, 7)
(5, 8)
(7, 7)

[5, 6, 7]
[5, 6, 8]
[7, 6, 7](1, 8)

(1, (3,4))
(1, (3,5))
(1, (6,7))

[1, 2, 3, 5, 6, 8]
[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 5, 6, 7]

(7, 8) [7, 6, 8]

i (2, 4)
(2, (3,4))

[2, 3, 4]
[2, 3, 4](, (,))

(1, (6,8))
[, , , , ,]
[1, 2, 3, 5, 6, 8]

med (5, 8) [5, 6, 8]

(2, (3,4))
(2, (3,5))
(4, 4)
(4, (3,4))

[2, 3, 4]
[2, 3, 5]
[4, 3, 4]
[4, 3, 4]() []

var (8, 8) No path needed
sd (8, 8) No path needed
sum (1 4) [1 2 3 4]

(, (,))
(4, (3,5))
(5, 7)
(5, (6,7))

[, ,]
[4, 3, 5]
[5, 6, 7]
[5, 6, 7]

sum (1, 4)
(1, 5)
(4, 4)
(4 5)

[1, 2, 3, 4]
[1, 2, 3, 5]
[4, 3, 4]
[4 3 5]

(())
(5, (6,8))
(7, 7)
(7, (6,7))

[5, 6, 8]
[7, 6, 7]
[7, 6, 7]

(4, 5) [4, 3, 5] (7, (6,8)) [7, 6, 8]

20

DU Paths for Stats DU Paths for Stats –– No DuplicatesNo Duplicates
There are 38 DU paths for Stats, but only 12 uniqueThere are 38 DU paths for Stats, but only 12 unique

[1, 2, 3, 4]
[1, 2, 3, 5]
[1 2 3 5 6 7]

[4, 3, 4]
[4, 3, 5]
[5 6 7][1, 2, 3, 5, 6, 7]

[1, 2, 3, 5, 6, 8]
[2, 3, 4]

[5, 6, 7]
[5, 6, 8]
[7, 6, 7]

[2, 3, 5] [7, 6, 8]

4 expect a loop not to be “entered”4 expect a loop not to be entered

6 require at least one iteration of a loop

2 require at least two iteration of a loop

21

Test Cases and Test PathsTest Cases and Test Paths
Test Case : numbers = (44) ; length = 1
Test Path : [1, 2, 3, 4, 3, 5, 6, 7, 6, 8][, , , , , , , , ,]
Additional DU Paths covered (no sidetrips)
[1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]
Th fi t th t i t l t it ti f lThe five stars that require at least one iteration of a loop

Test Case : numbers = (2, 10, 15) ; length = 3
T P h [1 2 3 4 3 4 3 4 3 5 6 7 6 7 6 7 6 8]Test Path : [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8]
DU Paths covered (no sidetrips)
[4, 3, 4] [7, 6, 7][4, 3, 4] [7, 6, 7]
The two stars that require at least two iterations of a loop

Other DU paths require arrays with length 0 to skip loopsOther DU paths require arrays with length 0 to skip loops
But the method fails with divide by zero on the statement …

mean = sum / (double) length; A fault was

22

found

SummarySummarySummarySummary

Applying the graph test criteria to Applying the graph test criteria to control flow graphs control flow graphs is is
relatively straightforwardrelatively straightforward

Most of the developmentalMost of the developmental researchresearch work was done with CFGswork was done with CFGsMost of the developmental Most of the developmental researchresearch work was done with CFGswork was done with CFGs

A fewA few subtle decisionssubtle decisions must be made to translate controlmust be made to translate controlA few A few subtle decisions subtle decisions must be made to translate control must be made to translate control
structures into the graphstructures into the graph

Some tools will assign each statement to aSome tools will assign each statement to a unique nodeunique node
These slides and the book uses These slides and the book uses basic blocksbasic blocks
Coverage is the same, although the Coverage is the same, although the bookkeeping bookkeeping will differwill differ

