Introduction to Software Testing
Chapter 2.3
Graph Coverage for Source Code

Paul Ammann & Jeff Offutt

\7

W/
UVC

if'\l \ATJ

Pa'
VICVV

The most common application of graph criteria is to
program source

Graph : Usually the control flow graph (CFG)
Node coverage . Execute every statement
Edge coverage . Execute every branch

_oops : Looping structures such as for loops, while
00ps, etc.

Data flow coverage : Augment the CFG

defs are statements that assign values to variables
uses are statements that use variables

KAIST

KAIST

Control Flow Graphs

A CFG models all executions of a method by describing control
structures

Nodes : Statements or sequences of statements (basic blocks)
Edges : Transfers of control

Basic Block : A sequence of statements such that if the first
statement is executed, all statements will be (no branches)

CFGs are sometimes annotated with extra information

branch predicates
defs
uses

Rules for translating statements into graphs ...

o
-
D

L

Jud

(©

G

V)

L
e

O
LL

O

>
1
X
>
I
AN
X
i d
> A7
Vv
X
—
o +
I X
>
X
o
~ +
> O x >
V
g
X
~— > X w X
= ~ O

KAIST

— - Th
I 11

@ n 1 f
I . 1T |1

mn
\

If (X <vy)
{

}
print (x);
return,;

return;

DA
-M\C

No edge from node 2 to 3.
The return nodes must be distinct.

return

tfrivn
LUl

C+
L

X<y

~
A

| am)

+ ~
LCTIIICT

X>=y

A4
print (x)
return

m

t
L

N\ M

I Mmoo
LOOPS

Loops require “extra” nodes to be added

Nodes that do not represent statements or basic blocks

KAIST

CFG . w$hile and for Loops

X =0;

while (x <vy) dummy node

{ !
y =1 (X,VY); implicitly
X=X+ 1; initializes loop | X=0

}

for (X =0; X <y; X++)
{

y =t y),
}

implicitly
Increments loop

KAIST

KAIST

®

J

FG

read (C);
switch (c)
{
case ‘N’:
y =25
break;
case 'Y’:
y =50;
break;
default:

y =0;
break;
}
print (y);

CD

/\

—
@

0

C

@
—t

C

-
D

Example Control Flow — Stats

public static void computeStats (int [] numbers)

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (int1=0; i <length; i++)
{
sum += numbers [i];
}

med = numbers [length/?2];
mean = sum / (double) length;

varsum = 0;
for (int1=0; i <length; i++)
{
varsum = varsum + ((numbers [|] - mean) * (numbers [|] - mean));
}

var = varsum / (length - 1.0);
sd = Math.sqgrt (var);

System.out.printin ("length: " + length);
System.out.printin ("mean: "+ mean);
System.out.printin ("median: " + med);
System.out.println ("variance: "+ var);

System.out.println ("standard deviation: " + sd);

KAIST

Control Flow Graph for Stats

public static void computeStats (int [] numbers) v
L

int length = numbers.le ; -
double med, var, sd, mean, ;

sd = Math.sqgrt (var);

System.out.printin ("length: " + length);
System.out.printin ("mean: -+ mean);
System.out.printin ("median: " + medJ;
System.out.printin ("variance: "+ var);

System.out.println ("stan eviation: " + sd);

T T+

Control Flow TRs and Test Paths — EC

Edge Coverage
(2 TR Test Path

A.[1,2]][1,23,4,3,56,7,6,8]
e B.[2, 3
C.[3,4]
Gy
(5) E.[4,3
F.[5 6]
G.[6,7]
6 H.[6,8]
.[7,6]

KAIST

Control Flow TRs and Test Paths — EPC

|
a Edge-Pair Coverage
TR Test Paths
e A[123] [i.[1,2,3,4,3,5,6,7,6,8]
B.[2,3,4] |ii.[1,2,3,5,6,8]
C.[2,3,5] [ii.[1,2,3,4,3,4,3,5,6, 7,
(3 D.[3,4,3 6,7,6,8]
' E.[3,56
° F. [4’ 3, 5] TP TRs toured sidetrips
9 G.[5,6,7] i |ABDEFG,I1J| CH
H.[5,6,8] i A C, E, H
e 1.[6,7,6] i | AB,DEFG,I | CH
J.[7,6,8] J KL
K.[4,3,4]
(7) (8)[L.[7,6,7]

PPC

Control Flow TRs and Test Paths —

Prime Path Coverage

%)
r— =3 N
0@ WI,I_J_J
- ©
(@ 1 p— .QHH
N~]OnWOO.. -
m6,3,86,6_|_ o
S5 < O 0~ mmru_._.__u _
A T, .-
D|337OO..66 WE,D,F,F,
= - e~ <t i~ - . |
(Vp] 46 LO LO wn - -
o Y T DnDCAD
TQu..B_/OOOOOO Fl<| g
NaoNNN <
— 0w -
[T iy S L — - | = >
|V. — D R
—_— _— >
—
— — N~ OO
M~ 0 | -~
— - ..6n0..
R... i . - .461615:5
T o~ eow oo

T MNOO~SND g
16_4_7__7_61’441’1’

el el

] Mg —

<OoO0OQUWWLwOI =~

KAIST

Data Flow Coverage for Source

def : a location where a value is stored into memory
X appears on the left side of an assignment (x = 44;)
X Is an actual parameter in a call and the method changes its value
x is a formal parameter of a method (implicit def when method starts)
X IS an input to a program

use : a location where variable’s value is accessed
X appears on the right side of an assignment
X appears in a conditional test
X Is an actual parameter to a method
X is an output of the program
X is an output of a method in a return statement

If a def and a use appear on the same node, then it is only a DU-pair
iIf the def occurs after the use and the node is in a loop

14

Example Data Flow — Stats

public static void computeStats (int [] numbers)

int length = numbers.length;
double med, var, sd, mean, sum, varsum;

sum = 0;
for (inti=0;i<length i++)
{
sum += numbers [i];
}

mean = sum / (double) length;
med = numbers [length/2];

varsum =0
for (inti=0 i<length; i++)
{

varsum = varsum + ((numbers [i]- mean) * (humbers [i] - mean

}

var = varsum / (length - 1.0);
sd = Math.sqgrt (var);

System.out.println ("length: " + length);
System.out.printin ("mean: " + mean);
System.out.printin ("median: " + med);
System.out.println ("variance: "+ var);

System.out.println ("standard deviation: " + sd);

15

Control Flow Graph for Stats

(numbers)
sum =0
length = numbers.length

=0

OmOmOn

| >= length

| <length
mean = sum / (double) length;

med = numbers [length / 2]

. varsum =0
Am +=numbers [i] .

: 1=0
i++
| >=length
| <length

var =varsum / (length - 1.0)

sd = Math.sqrt (var)
varsum print (length, mean, med,
i++

var, sd)

16

CFG for Stlats — With Defs & Uses

(]Pdef (1) ={ numbers, sum, length }

def (2)={i}

use (3, 5) ={1i, length }

def (5) ={ mean, med, varsum, i }
use (5) = { numbers, length, sum }

use (6, 8) ={1i, length }

def (8) ={ var, sd }

def (7) ={ varsum, i}

Ulaflﬁ') ={ varsum, numba

med, var, sd }

use (8) = { varsum, length, mean,

17

Defs and Uses Tables for Stats

Node Def Use

1 { numbers, sum,
length }

2 {1}

3

4 {sum, i} { numbers, i, sum }

5 { mean, med, { numbers, length, sum }
varsum, i }

6

7 { varsum, i } { varsum, numbers, i,

mean }
8 { var, sd } { varsum, length, var,

mean, med, var, sd }

Edge Use
(1, 2)
(2, 3)
(3, 4) {1, length }
(4, 3)
(3, 5) {1, length }
(5, 6)
(6, 7) {1, length }
(7, 6)
(6, 8) {1, length }

KAIST

18

DU Pairs for Stats

variable /DU Pairs defs come before uses, do
numbers | (L 4) (L5) (J/7) potcountasbUpalrs
length (1, 5) (1, 8)/(1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))
med (58 /
var «8, 8) /| defs after use in{loop,
s (8, 8) / these are valid DU pairs
mean (3,'7/)(5,8) A/ N e .
sum | (1,4) (1,5) ?_4%” SR vty i
varsum | (5,7) (5,8)(7,7) {7, 8) / RS
| (2,4) (2, (B4) 2. (3.5)4E-D-R2A6D)12-6:8))

(4,4) (4 (3,4) (4, (3,9)) t4-(48--(46:8))-

2. Q5 D) 15 OO N\ No path through graph from

(@, 7)1, 67) (7, (68)

nodesS5and7to4 or 3

19

DU Paths for Stats

variable | DU Pairs DU Paths variable DU Pairs DU Paths
numbers | (1, 4) [1,2,3,4] mean (5, 7) [5,6, 7]
(1, 5) [1,2,3,5] (5, 8) [5,6,8]
(1, 7) [1,2,3,5,6, 7] | [varsum (5, 7) [5,6, 7]
length | (L, 5) [1,2, 3, 5] (. 8) [5,6,8]
(1, 8) [1,2,35,6,8] (7, 7) [7,6,7]
(1,(3,4) |[1,23, 4] (7, 8) [7.6,8]
(1,@35) |[1,23,5] (2, 4) [2,3,4]
1,6.7) |[1.2,3,56,7] (2,(34) |[23,4]
(1,(6,8) |[1,2,3,56,8] (2, (3,5)) [2,3,5]

(4, 4) [4,3,4]
med (5, 8) [5,6,8] 4,(34) |[4,3,4]
var (8, 8) No path needed (4,(35) |[4,3,5]
sd (8, 8) No path needed Eg (76)) %g g H
sum (A L2 3. 5.(68) |[5,6 8]

(1, 5) [1,2,3,5] .7 (7.6.7]

(4, 4) [4,3,4] (7.67) |[7.67]

(4, 9) [4.3,5] (7,6,.8) |[7.6 8]
KAIST 20

DU Paths for Stats — No Duplicates

There are 38 DU paths for Stats, but only 12 unigue

iz1,2,3,4] 4,3, 414
1,2,3,5] 4,3,5]4
4H1,2356,7] |[56 7]
(1,2,3,5,6,8] |[5,6,814
2,3,4] (7,6, 71
2,3,5] (7,6,8]4-
| 4 expect a loop not to be “entered

+» 6 require at least one iteration of a loop

{3 2 require at least two iteration of a loop

21

Test Cases and Test Paths

Test Case : numbers = (44) ; length =1
TestPath:[1,2,3,4,3,56,7,6,8]
Additional DU Paths covered (no sidetrips)

[1,2,3,4] [2,3,4] [4,3,5] [5,6,7] [7,6,8]
The five stars +that require at least one iteration of a loop

Test Case : numbers = (2, 10, 15) ; length = 3

Test Path: [1,2,3,4,3,4,3,4,3,5,6,7,6,7,6,7,6,8]
DU Paths covered (no sidetrips)

[4,3,4] [7,6,7]

The two stars {3 that require at least two iterations of a loop

Other DU pathsskrequire arrays with length 0 to skip loops

But the method fails with divide by zerg on the statement ...

mean = sum / (double) length;

A fault was
found

KAIST

22

11 v\’

Q
Suimmary

Applying the graph test criteria to control flow graphs is
relatively straightforward

Most of the developmental research work was done with CFGs

A few subtle decisions must be made to translate control
structures into the graph

Some tools will assign each statement to a unique node
These slides and the book uses basic blocks
Coverage is the same, although the bookkeeping will differ

