The Spin Model Checker
- Advanced Features

Moonzoo Kim
CS Dept. KAIST

Korea Advanced Institute of
KAIST Science and Technology

Review: 6 TzEes of Basic Statements

B Assignment: always executable
+ Ex. Xx=3+X, X=run A(Q)
B Print: always executable
+ Ex. printf(““Process %d 1s created.\n”, pid);
B Assertion: always executable
+ Ex.assert(X + y == 2)
B Expression: depends on its value
+ EX. x+3>0,0, 1, 2
+ EX. skip, true
B Send: depends on buffer status
+ Ex. ch1l!mis executable only if chl is not full

B Receive: depends on buffer status

+ EX. chl?mis executable only if chl is not empty

KAIST
L®

Usages of If-statement

/* find the max of x and y */ [* necessity of else */

If [*in C, if(x==0) y=10; */
X >=y ->m =X I
X<=y->m=y x==0->y=10
fi else /*ie,x!=0%*
fi
[* Random assignment */ [* dubious use of else with receive statement */
If If
> n=0 .- ch?msgl -> ...
T n=l . ch?msg2 ->
1 n=2 .. else -> ... [* use empty(ch) instead*/
fi fi
KAIST

Usages of Do-statement

do Loop: if

;. (x ==y) -> break o (x ==y) -> skip L

. else -> skip :: else -> goto Loop (x==y)
od fi

else else
. X==
X==y skip X==y 4

Note that break or goto is not a statement, but control-flow modifiers

KAIST

B 4

More Usages of Various OEerators

E More operators

+ The standard C preprocessors can be used
« #define, #if, #ifdef, #include
+ To overcome limitation of lack of functions
o #define add(a,b,c)c=a+b
 inline add(a,b,c){c=a+b}
» Note that these two facilities still do not return a value
+ Build multi-dimension array
» typedef array {byte y[3];}
array x[2];
x[2].y[1] = 10;
+ (cond ->v1:v2)is used as (cond? vl: v2) in C

KAIST

L :

More Usages of Various OEerators

B Predefined variable

+ else: true Iff no statement in the current process is
executable

+ timeout : 1 iff no statement in the model is executable
+ . ascratch variable

+ pid: an ID of current process

+ _Nr_pr: a total # of active processes

+ last: an ID of the process executed at previous step
+ STDIN: a predefined channel used for simulation

+ Remote reference

* name[pid]@label _name
— name: proctype name

* name[pid]:var_name
KAIST

Ln :

Atomic

B atomic { g1, s1;s2;s3;s4}

+ A sequence of statements g1;s1;s2;s3;s4 IS
executed without interleaving with other
processes

+ Executable if the guard statement (gl)is
executable

e g1 can be other statement than expressmn

P | ctate nt other than the qguard
II al Iy DLQLCIIICIIL ULIICI LIICI.II uaic U U

blocks, atomicity Is lost.

+ Atomicity can be regained when the
statement becomes executable

KAIST
L

d step

B d step{gl,; sl;s2;s3}
+ gl,s1, s2, and s3 must be deterministic (non-
determinism is not allowed)

+ g1,s1,s2, and s3 must not be blocked

B Used to perform intermediate computations as a
single indivisible step
+ If non-determinisim is present inside of d_step, it is
resolved in a fixed and deterministic way
 For instance, by always seiecting the first true guard in every
selection and repetition structure
+ EX. Sorting, or mathematical computation

B Goto-jumps into and out of d_step sequences
are forbidden

KAIST
Lm

atomic v.s. d_step

B Atomic and d_step are often used in order to reduce the
size of a target model

E Both sequences are executable only when the guard
statement Is executable

+ atomic: if any other statement blocks, atomicity is lost at that
point; it can be regained once the statement becomes
executable later

+ d_step: itis an error if any statement other than the guard
statement blocks

E Other differences:

+ d_step: the entire sequence is executed as one single transition.

+ atomic: the sequence is executed step-by-step, but without
Interleaving, it can make non-deterministic choices

E Caution:

+ Infinite loops inside atomic or d_step sequences are not detected

+ the execution of this type of sequence models an indivisible step,
which means that it cannot be infinite

KAIST
Ln

Examples: atomic v.s. d ste

Rendezvous Comm. within atomic Sequences

B A sender performs a sending operation and a
receiver performs a receiving operation at the
same time for rendezvous communication

B If a sender has ch!msg in the atomic clause,
after the rendezvous handshake, the sender
loses Its atomicity

B If a receiver has ch?msg in the atomic clause,
after the rendezvous handshake, the receiver
continues its atomicity

B Therefore, if both operations are in atomic
clauses, atomicity moves from a sender to a
receiver in a rendezvous handshake

KAIST

- -

unless

{guardl; <stmts1>} unless {guard2; <stmts2>}
+ T0 provide exception handling, or preemption capability

The unless statement is executable if either
+ the guard statement of the main sequence is executable, or
+ the guard statement of the escape sequence is executable

<stmts1l> can be executed until guard2 becomes true. If
then, <stmts2> becomes executable and <stmts1> is not
executable anymore

+ Unless clause (<stmts2>) preempts a main clause (<stmts1>) if
guard?2 is executable, i.e., main clause is stopped.

+ Once unless clause becomes executable, no return to the main
clause

Resembles exception handling in languages like Java

and ML

KAIST

12

Ln

Embedded C Code

B Spin versions 4.0 and later support the inclusion
of embedded C code into Promela model
+ C_expr : auser defined boolean guard
4+ C_code : auser defined C statement
+ C_decl : declares data types
+ C_state: declares data objects
+ C_track: to guide the verifier whether it should
track the value of data object or not
B Embedded C codes are trusted blindly and

copied through from the text of the model into
the code of pan.c

KAIST
L®

13

Example 1

c_decl {typedef struct Coord {int x, y;} Coord;}
c_state “Coord pt” “Global” /* goes inside state vector */
int z = 3; /* standard global declaration */
active proctype example() {
c _code { now.pt.x = now.pt.y = 0;};
do
2o c_expr {now.pt.x == now.pt.y } ->
c_code {now.pt.y++}
::- else -> break
od;
c_code {
printf(“values %d:%d,%d,%d\n"",
Pexample-> pid, now.z, now.pt.x, now.pt.y); };
assert(false);

}
KAIST

l.r| 14

Communication between Embedded C and Promela

B c_state primitive introduces a new global data
object pt of type Coord Iinto the state vector

+ The object is initialized to zero according to the
convention of Promela

B A global data object in a Promela model can be
accessed through now.<var> in embedded C

codes
B A local data object in a Promela model can be
accessed through P<procname>-><var>

KAIST

LS E

Example 2

c_decl {typedef struct Coord {int x, y;} Coord;}

c_code {Coord pt;} /* Embedded declaration goes inside
state vector */

int z = 3; /* standard global declaration */
active proctype example() {
c _code { now.pt.x = now.pt.y = 0;};
do
2- c_expr {now.pt.x == now.pt.y } ->
c_code {now.pt.y++}
:- else -> break
od;
c_code {
printf(“values %d:%d,%d,%d\n"",
Pexample-> pid, now.z, now.pt.x, now.pt.y); };
assert(false);

}
KAIST

Lo T

Weak Fairness v.s. Strong Fairness

B Strong fairness

+ An w-run ¢ satisfies the strong fairness requirement if it contains
Infinitely many transitions from every component automaton that is
enabled infinitely often in o

e FAIRNESS running in NuSMV

B Weak fairness

+ An w-run ¢ satisfies the weak fairness requirement if it contains

Infinitely many transitions from every component automaton that is
enabled infinitely long in o

O Automata A O Automata A
O Automata C O Automata C
w-run o w-run o’

lill 17

Examples

byte Xx;

active proctype A() {
do

L X=2;

L X=3;

od;}

Pl <> x==2

F: no fairness

F: weak fairness */

KAIST

byte X;

active proctype A() {
do

L X=2;

od;}

active proctype B() {
do

.- atomic{x==2 -> x=1;}
od;}

"] <> (x==1)

F: no fairness

T. weak fairness, thus T
with strong fairness */

byte x;

active proctype A() {
do

L X=2;

- X=3;

od;}

active proctype B() {
do

.- atomic{x==2 -> x=1;}
od;}

[<> (x==1)
F: if weak fairness is
applied

*/

18

