First order theories

(Chapter 1, Sections 1.4-1.5)

From the slides for the book
"Decision procedures"
by D.Kroening and O.Strichman

First order logic

- A first order theory consists of
- Variables
- Logical symbols: $\wedge \vee \neg \forall \exists$ '(' ')'
- Non-logical Symbols \sum : Constants, predicate and function symbols
- Syntax

Examples

- $\sum=\left\{0,1,{ }^{\prime}+\right.$ ', ‘>’ $\}$
- '0','1' are constant symbols
- '+' is a binary function symbol
- ' $>$ ' is a binary predicate symbol
- An example of a \sum-formula:

$$
\exists y \forall x . x>y
$$

Examples

- $\sum=\left\{1, \times{ }^{\prime},{ }^{\prime}<\right.$ ', 'isprime' $\}$
- ' 1 ' is a constant symbol
- ' $>$ ', '<' are binary predicates symbols
- 'isprime' is a unary predicate symbol
- An example \sum-formula:
$\forall \mathrm{n} \exists \mathrm{p} . \mathrm{n}>1 \rightarrow$ isprime $(\mathrm{p}) \wedge \mathrm{n}<\mathrm{p}<2 \mathrm{n}$.
- Are these formulas valid?
- So far these are only symbols, strings. No meaning yet.

Interpretations

- Let $\sum=\{0,1, ~ ‘+’, ~ ‘=’\}$ where 0,1 are constants, ' + ' is a binary function symbol and ' $=$ ' a predicate symbol.
- Let $\phi=\exists \mathrm{x} . \mathrm{x}+0=1$
- Q: Is ϕ true in \mathcal{N}_{0} ?
- A: Depends on the interpretation!

Structures

- A structure is given by:

1. A domain
2. An interpretation of the nonlogical symbols: i.e.,

- Maps each predicate symbol to a predicate of the same arity
- Maps each function symbol to a function of the same arity
- Maps each constant symbol to a domain element

3. An assignment of a domain element to each free (unquantified) variable

Structures

- Remember $\phi=\exists \mathrm{x} . \mathrm{x}+0=1$
- Consider the structure S :
- Domain: \mathcal{N}_{0}
- Interpretation:
- ' 0 ' and ' 1 ' are mapped to 0 and 1 in \mathcal{N}_{0}
- ' $=$ ' \mapsto = (equality)
- '+' \mapsto * (multiplication)
- Now, is ϕ true in S ?

Satisfying structures

- Definition: A formula is satisfiable if there exists a structure that satisfies it
- Example: $\phi=\exists x . x+0=1$ is satisfiable
- Consider the structure S^{\prime} :
- Domain: \mathcal{N}_{0}
- Interpretation:
- ' 0 ' and ' 1 ' are mapped to 0 and 1 in \mathcal{N}_{0}
- ‘=‘ $\mapsto=$ (equality)
- ' + ' $\mapsto+$ (addition)
- S' satisfies ϕ. S^{\prime} is said to be a model of ϕ.

First-order theories

- First-order logic is a framework.
- It gives us a generic syntax and building blocks for constructing restrictions thereof.
- Each such restriction is called a first-order theory.
- A theory defines
- the signature \sum (the set of nonlogical symbols) and
- the interpretations that we can give them.

Definitions

- $\quad \Sigma$ - the signature. This is a set of nonlogical symbols.
- $\quad \sum$-formula: a formula over \sum symbols + logical symbols.
- A variable is free if it is not bound by a quantifier.
- A sentence is a formula without free variables.
- A \sum-theory T is defined by a set of \sum-sentences.

Definitions...

- Let T be a \sum-theory
- A \sum-formula ϕ is T-satisfiable if there exists a structure that satisfies both ϕ and the sentences defining T.
- A \sum-formula ϕ is T-valid if all structures that satisfy the sentences defining T also satisfy ϕ.

Example

- Let $\sum=\{0,1, ‘+’, ‘=’$
- Recall $\phi=\exists \mathrm{x} . \mathrm{x}+0=1$
- ϕ is a \sum-formula.
- We now define the following \sum-theory:
- $\forall x . x=x \quad / /$ ' $=$ ' must be reflexive
- $\forall x, y \cdot x+y=y+x \quad / / ~ '+$ ' must be commutative
- Not enough to prove the validity of ϕ !

Theories through axioms

- The number of sentences that are necessary for defining a theory may be large or infinite.
- Instead, it is common to define a theory through a set of axioms.
- The theory is defined by these axioms and everything that can be inferred from them by a sound inference system.

Example 1

- Let $\sum=\left\{{ }^{\prime \prime}=\right.$ ' $\}$
- An example \sum-formula is $\phi=((x=y) \wedge \neg(y=z)) \rightarrow \neg(x=z)$
- We would now like to define a \sum-theory T that will limit the interpretation of ' $=$ ' to equality.
- We will do so with the equality axioms:
- $\forall x . x=x$
(reflexivity)
- $\forall x, y \cdot x=y \rightarrow y=x$
(symmetry)
- $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
(transitivity)
- Every structure that satisfies these axioms also satisfies ϕ above.
- Hence ϕ is T-valid.

Example 2

- Let $\sum=\left\{{ }^{\prime}<\right.$ ' $\}$
- Consider the \sum-formula $\phi: \forall \mathrm{x} \exists \mathrm{y} . \mathrm{y}<\mathrm{x}$
- Consider the theory T:
- $\forall x, y, z . x<y \wedge y<z \rightarrow x<z \quad$ (transitivity)
- $\forall x, y . x<y \rightarrow \neg(y<x)$
(anti-symmetry)

Example 2 (cont'd)

- Recall: $\phi: \forall \mathrm{x} \exists \mathrm{y} . \mathrm{y}<\mathrm{x}$
- Is ϕ T-satisfiable?
- We will show a model for it.
- Domain: \mathcal{Z}
- 'く' $\mapsto<$
- Is ϕ T-valid?
- We will show a structure to the contrary
- Domain: \mathcal{N}_{0}
- ' $<$ ' $\mapsto<$

Fragments

- So far we only restricted the nonlogical symbols.
- Sometimes we want to restrict the grammar and the logical symbols that we can use as well.
- These are called logic fragments.
- Examples:
- The quantifier-free fragment over $\sum=\left\{{ }^{\prime}=’, '+\prime, 0,1\right\}$
- The conjunctive fragment over $\sum=\left\{={ }^{\prime}=,{ }^{\prime}+\prime, 0,1\right\}$

Fragments

- Let $\sum=\{ \}$
- (T must be empty: no nonlogical symbols to interpret)
- Q: What is the quantifier-free fragment of T?
- A: propositional logic
- Thus, propositional logic is also a first-order theory.
- A very degenerate one.

Theories

- Let $\sum=\{ \}$
- (T must be empty: no nonlogical symbols to interpret)
- Q: What is T?
- A: Quantified Boolean Formulas (QBF)
- Example:
- $\forall x_{1} \exists x_{2} \forall x_{3} . x_{1} \rightarrow\left(x_{2} \vee x_{3}\right)$

Some famous theories

- Presburger arithmetic: $\Sigma=\{0,1$, ' + ', ‘=’\}
- Peano arithmetic: $\Sigma=\left\{0,1,{ }^{‘+}{ }^{\prime}\right.$, '*’, ‘=’\}
- Theory of reals
- Theory of integers
- Theory of arrays
- Theory of pointers
- Theory of sets
- Theory of recursive data structures
- ...

The algorithmic point of view...

- It is also common to present theories NOT through the axioms that define them.
- The interpretation of symbols is fixed to their common use.
- Thus '+' is plus, ...
- The fragment is defined via grammar rules rather than restrictions on the generic first-order grammar.

The algorithmic point of view...

- Example: equality logic (= "the theory of equality")
- Grammar: formula : formula \vee formula $\mid \neg$ formula | atom
atom : term-variable = term-variable
| term-variable = constant | Boolean-variable
- Interpretation:
' $=$ ' is equality.

The algorithmic point of view...

- This simpler way of presenting theories is all that is needed when our focus is on decision procedures specific for the given theory.
- The traditional way of presenting theories is useful when discussing generic methods (for any decidable theory T)
- Example 1: algorithms for combining two or more theories
- Example 2: generic SAT-based decision procedure given a decision procedure for the conjunctive fragment of T.

Expressiveness of a theory

- Each formula defines a language: the set of satisfying assignments ('models') are the words accepted by this language.
- Consider the fragment '2-CNF'
formula: \quad (literal \vee literal) | formula \wedge formula literal: Boolean-variable $\mid \neg$ Boolean-variable

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{3} \vee x_{2}\right)
$$

Expressiveness of a theory

- Now consider a Propositional Logic formula
$\phi:\left(x_{1} \vee x_{2} \vee x_{3}\right)$.
- Q: Can we express this language with 2-CNF?
- A: No.

Proof:

- The language accepted by ϕ has 7 words: all assignments other than $x_{1}=x_{2}=x_{3}=\mathrm{F}$.
- The first $2-C N F$ clause removes $1 / 4$ of the assignments, which leaves us with 6 accepted words. Additional clauses only remove more assignments.

Expressiveness of a theory

- Claim: 2-CNF \prec Propositional Logic
- Generally there is only a partial order between theories.

The tradeoff

- So we see that theories can have different expressive power.
- Q: why would we want to restrict ourselves to a theory or a fragment? why not take some 'maximal theory'...
- A: Adding axioms to the theory may make it harder to decide or even undecidable.

Example: Hilbert axiom system (\mathcal{H})

- Let \mathcal{H} be (M.P) + the following axiom schemas:

$$
\begin{align*}
& \overline{\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{~A})}(\mathrm{H} 1) \\
& \overline{((\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))} \tag{H2}\\
& \overline{(\neg \mathrm{B} \rightarrow \neg \mathrm{~A}) \rightarrow(\mathrm{A} \rightarrow \mathrm{~B})} \tag{H3}
\end{align*}
$$

- \mathcal{H} is sound and complete
- This means that with \mathcal{H} we can prove any valid propositional formula, and only such formulas. The proof is finite.

Example

- But there exists first order theories defined by axioms which are not sufficient for proving all T-valid formulas.

Example: First Order Peano Arithmetic

- $\quad \sum=\left\{0,1, ‘+{ }^{\prime},{ }^{\prime *},{ }^{\prime}=’\right\}$
- Domain: Natural numbers
- Axioms ("semantics"):

Undecidable!

1. $\forall x:(0 \neq x+1)$
2. $\forall x: \forall y:(x \neq y) \rightarrow(x+1 \neq y+1)$
$+ \begin{cases}\text { 3. } & \text { Induction } \\ \text { 4. } & \forall x: x+0=x \\ \text { 5. } & \forall x: \forall y:(x+y)+1=x+(y+1)\end{cases}$
These axioms define the semantics of ' + '

* $\begin{cases}\text { 6. } & \forall x: x^{*} 0=0 \\ \text { 7. } & \forall x \forall y: x^{*}(y+1)=x^{*} y+x\end{cases}$

Example: First Order Presburger Arithmetic

- $\quad \Sigma=\left\{0,1,{ }^{\prime}+{ }^{\prime}\right.$, '大火, ' $=$ ' $\}$
- Domain: Natural numbers
- Axioms ("semantics"):

decidable!

1. $\forall x:(0 \neq x+1)$
2. $\forall x: \forall y:(x \neq y) \rightarrow(x+1 \neq y+1)$
3. Induction
$+\left\{\begin{array}{l}\text { 4. } \quad \forall \mathrm{x}: \mathrm{x}+0=\mathrm{x}\end{array}\right.$
$\forall x: \forall y:(x+y)+1=x+(y+1)$
These axioms define the semantics of ' + '
$* \begin{cases}\text { 6. } & \forall x: x^{*} 0=0 \\ \text { 7. } & \forall x \forall y: x^{*}(y+1)=x^{*} y+x\end{cases}$

Tradeoff: expressiveness/computational hardness.

- Assume we are given theories $\mathcal{L}_{1} \prec \ldots \prec \mathcal{L}_{\mathrm{n}}$

When is a specific theory useful?

1. Expressible enough to state something interesting.
2. Decidable (or semi-decidable) and more efficiently solvable than richer theories.
3. More expressible, or more natural for expressing some models in comparison to 'leaner' theories.

Expressiveness and complexity

- Q1: Let \mathcal{L}_{1} and \mathcal{L}_{2} be two theories whose satisfiability problem is decidable and in the same complexity class. Is the satisfiability problem of an \mathcal{L}_{1} formula reducible to a satisfiability problem of an \mathcal{L}_{2} formula?
- Q2: Let \mathcal{L}_{1} and \mathcal{L}_{2} be two theories whose satisfiability problems are reducible to one another.
Are \mathcal{L}_{1} and \mathcal{L}_{2} in the same complexity class ?

