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First order logic

A first order theory consists of
Variables
Logical symbols: Æ Ç ¬ ∀ ∃ `(’ `)’
Non logical Symbols ∑: Constants predicate and functionNon-logical Symbols ∑: Constants, predicate and function 
symbols 
Syntax
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Examples

∑ = {0,1, ‘+’, ‘>’}
‘0’,’1’ are constant symbols
‘+’ is a binary function symbol
‘>’ is a binary predicate symbol>  is a binary predicate symbol

An example of a ∑-formula:An example of a ∑ formula: 

∃y ∀x x > y∃y ∀x. x > y
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Examples

∑ = {1, ‘>’, ‘<’, ‘isprime’}
‘1’ is a constant symbol
‘>’, ‘<‘ are binary predicates symbols
‘isprime’ is a unary predicate symbolisprime  is a unary predicate symbol

An example ∑-formula:

∀n ∃p. n > 1 → isprime(p) Æ n < p < 2n.

Are these formulas valid ? 

So far these are only symbols, strings. No meaning yet. 
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Interpretations

Let ∑ = {0,1, ‘+’, ‘=’} where 0,1 are constants, ‘+’ is a 
binary function symbol and ‘=’ a predicate symbol.

Let φ = ∃x. x + 0 = 1

Q: Is φ true in N0 ?Q: Is φ true in N0 ? 

A D d h i i !A: Depends on the interpretation! 
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Structures

A structure is given by:
1. A domain
2. An interpretation of the nonlogical symbols: i.e.,

Maps each predicate symbol to a predicate of the same arityMaps each predicate symbol to a predicate of the same arity
Maps each function symbol to a function of the same arity
Maps each constant symbol to a domain elementp y

3. An assignment of a domain element to each free (unquantified) 
variable
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Structures

Remember φ = ∃x. x + 0 = 1

Consider the structure S: 
Domain: N0

Interpretation: 
‘0’ and ‘1’ are mapped to 0 and 1 in N0

‘=’ a = (equality)=  a = (equality) 
‘+’ a * (multiplication)

Now is φ true in S ?Now, is φ true in S ? 
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Satisfying structures

Definition: A formula is satisfiable if there exists a 
structure that satisfies it

Example: φ = ∃x. x + 0 = 1 is satisfiable

Consider the structure S’:Consider the structure S : 
Domain: N0

Interpretation: p
‘0’ and ‘1’ are mapped to 0 and 1 in N0

‘=‘ a = (equality)
‘+’ a + (addition)

S’ satisfies φ.  S’ is said to be a model of φ.
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First-order theories

First-order logic is a framework.

It gives us a generic syntax and building blocks for 
constructing restrictions thereof.

Each such restriction is called a first-order theory.

A theory defines 
the signature ∑ (the set of nonlogical symbols) andthe signature ∑ (the set of nonlogical symbols) and 
the interpretations that we can give them.
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Definitions

∑ – the signature. This is a set of nonlogical symbols.g g y

∑-formula: a formula over ∑ symbols + logical symbols. 

A variable is free if it is not bound by a quantifier. 

A sentence is a formula without free variablesA sentence is a formula without free variables. 

A ∑-theory T is defined by a set of ∑-sentences.
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Definitions…

Let T be a ∑-theory

A ∑-formula φ is T-satisfiable if there exists a structure 

that satisfies both φ and the sentences defining Tthat satisfies both φ and the sentences defining T.

A ∑-formula φ is T-valid if all structures that satisfy the 

sentences defining T also satisfy φ.
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Example

Let ∑ = {0,1, ‘+’, ‘=’}

Recall φ = ∃x. x + 0 = 1

φ is a ∑-formula. φ

We now define the following ∑-theory:
∀x. x = x // ‘=‘ must be reflexive∀x. x  x // must be reflexive
∀x,y. x + y = y + x // ‘+’ must be commutative

Not enough to prove the validity of φ !
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Theories through axioms

The number of sentences that are necessary for defining 
a theory may be large or infinite. 

Instead, it is common to define a theory through a set of 
axioms.

The theory is defined by these axioms and everythingThe theory is defined by these axioms and everything 
that can be inferred from them by a sound inference 
s stemsystem.
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Example 1

Let ∑ = {‘=’}
An example ∑-formula is φ = ((x = y) Æ ¬ (y = z)) → ¬(x = z)

We would now like to define a ∑-theory T that will limit 
the interpretation of ‘=‘ to equality.

We will do so with the equality axioms: 
∀x. x = x (reflexivity)
∀x,y. x = y → y = x (symmetry)

( i i i )∀x,y,z. x = y Æ y = z → x = z (transitivity)

Every structure that satisfies these axioms also satisfies 
φ above. 

Hence φ is T-valid. 
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Example 2

Let ∑ = {‘<’}

Consider the ∑-formula φ: ∀x ∃y. y < x

Consider the theory T:y
∀x,y,z. x < y Æ y < z → x < z (transitivity)
∀x,y. x < y → ¬(y < x) (anti-symmetry) 
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Example 2 (cont’d)

Recall: φ: ∀x ∃y. y < x

Is φ T-satisfiable? φ

We will show a model for it.
Domain: ZDomain: Z
‘<’ a <

Is φ T-valid ?φ

We will show a structure to the contrary
Domain: N0Domain: N0

‘<’ a <
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Fragments

So far we only restricted the nonlogical symbols.

Sometimes we want to restrict the grammar and the 
logical symbols that we can use as well. 

These are called logic fragments. 

Examples:Examples:
The quantifier-free fragment over ∑ = {‘=’, ‘+’,0,1}
The conjunctive fragment over  ∑ = {‘=’, ‘+’,0,1}j g { , , , }
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Fragments

Let ∑ = {}
(T must be empty: no nonlogical symbols to interpret)

Q: What is the quantifier-free fragment of T ?

A: propositional logic 

Thus, propositional logic is also a first-order theory.
A very degenerate one.
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Theories

Let ∑ = {}
(T must be empty: no nonlogical symbols to interpret)

Q: What is T ?

A: Quantified Boolean Formulas (QBF)

Example: 
∀x1 ∃x2 ∀x3 x1 → (x2 Ç x3)∀x1 ∃x2 ∀x3. x1 → (x2 Ç x3)
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Some famous theories

Presburger arithmetic: ∑ = {0,1, ‘+’, ‘=’}

Peano arithmetic: ∑ = {0,1, ‘+’, ‘*’, ‘=’}

Theory of realsy

Theory of integers

Theory of arraysTheory of arrays

Theory of pointers

Theory of sets

Theory of recursive data structuresy

…
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The algorithmic point of view...

It is also common to present theories NOT through the 
axioms that define them.

The interpretation of symbols is fixed to their common 
use. 

Thus ‘+’ is plus, ...

The fragment is defined via grammar rules rather than 
restrictions on the generic first-order grammarrestrictions on the generic first-order grammar.

21



The algorithmic point of view...

Example: equality logic (= “the theory of equality”)

Grammar:

formula : formula Ç formula | ¬ formula  | atom| |

atom : term-variable = term-variable 
| term-variable = constant | Boolean-variable| term variable  constant  | Boolean variable

I iInterpretation: 
‘=’ is equality.
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The algorithmic point of view...

This simpler way of presenting theories is all that is 
needed when our focus is on decision procedures 
specific for the given theory. 

The traditional way of presenting theories is useful when y p g
discussing generic methods (for any decidable theory T)

Example 1: algorithms for combining two or more theoriesp g g
Example 2: generic SAT-based decision procedure given a 
decision procedure for the conjunctive fragment of T.
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Expressiveness of a theory

Each formula defines a language:
the set of satisfying assignments (‘models’) are the 
words accepted by this language.

Consider the fragment ‘2-CNF’g
formula : ( literal Ç literal ) |  formula Æ formula
literal: Boolean-variable | ¬Boolean-variable

(x1 Ç ¬x2) Æ (¬x3 Ç x2)
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Expressiveness of a theory

Now consider a Propositional Logic formula
φ: (x1 Ç x2 Ç x3).

Q: Can we express this language with 2-CNF?

A: No. 
Proof: 

The language accepted by φ has 7 words: all assignments other 
than x1 = x2 = x3 = F.
The first 2 CNF clause removes ¼ of the assignments whichThe first 2-CNF clause removes ¼ of the assignments, which 
leaves us with 6 accepted words. Additional clauses only remove 
more assignments.
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Expressiveness of a theory
Languages defined 

by L2

i i hL2 is more expressive than L1.

Denote: L1 ≺ L2

Languages defined 
by L1

Claim: 2-CNF ≺ Propositional Logicp g

Generally there is only a partial order between  theories.
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The tradeoff 

So we see that theories can have different expressive 
power.

Q: why would we want to restrict ourselves to a theory or 
a fragment ? why not take some ‘maximal theory’…g y y

A: Adding axioms to the theory may make it harder toA: Adding axioms to the theory may make it harder to 
decide or even undecidable.
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Example: Hilbert axiom system (H)

Let H be (M.P) + the following axiom schemas:

(H1)
A → (B → A)   

(H2)
((A →(B → C)) →((A→ B)→(A→ C))

(H3)
(¬B → ¬A) → (A → B)

H is sound and complete
This means that with H we can prove any valid propositionalThis means that with H we can prove any valid propositional 
formula, and only such formulas. The proof is finite.
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Example

But there exists first order theories defined by axioms 
which are not sufficient for proving all T-valid formulas.
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Example: First Order Peano Arithmetic

∑ = {0,1,‘+’, ‘*’, ‘=’}

Domain: Natural numbers

Axioms (“semantics”): Undecidable!Axioms ( semantics ):
1. ∀ x : (0 ≠ x + 1) 
2. ∀ x : ∀ y : (x ≠ y) → (x + 1 ≠ y + 1) 
3. Induction
4. ∀ x : x + 0 = x 
5. ∀ x : ∀ y : (x + y) + 1 = x + (y + 1) 

+ These axioms define the 
semantics of ‘+’y ( y) (y )

6. ∀ x : x * 0 = 0 
7. ∀ x ∀ y : x * (y + 1) = x * y + x *
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Example: First Order Presburger Arithmetic

∑ = {0,1,‘+’, ‘*’, ‘=’}

Domain: Natural numbers

Axioms (“semantics”): decidable!Axioms ( semantics ):
1. ∀ x : (0 ≠ x + 1) 
2. ∀ x : ∀ y : (x ≠ y) → (x + 1 ≠ y + 1) 
3. Induction
4. ∀ x : x + 0 = x 
5. ∀ x : ∀ y : (x + y) + 1 = x + (y + 1) 

+ These axioms define the 
semantics of ‘+’y ( y) (y )

6. ∀ x : x * 0 = 0 
7. ∀ x ∀ y : x * (y + 1) = x * y + x *
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Tradeoff: expressiveness/computational hardness.

Assume we are given theories L1 ≺ … ≺ Ln

Computational

Our course

More expressiveE i t d id

Computational 
Challenge! LnL1

More expressiveEasier to decide

IntractableTractable

UndecidableDecidable

Intractable
(exponential)

Tractable
(polynomial)
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When is a specific theory useful? 

1. Expressible enough to state something interesting.

2. Decidable (or semi-decidable) and more efficiently 
solvable than richer theories.

3. More expressible, or more natural for expressing some 
models in comparison to ‘leaner’ theories.p
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Expressiveness and complexity

Q1: Let L1 and L2 be two theories whose satisfiability 
problem is decidable and in the same complexity class. 
Is the satisfiability problem of an L1 formula reducible to 
a satisfiability problem of an L2 formula? 

Q2: Let L1 and L2 be two theories whose satisfiability 
problems are reducible to one another. p
Are L1 and L2 in the same complexity class ?
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