Propositional Calculus
 - Semantics (2/3)

Moonzoo Kim

CS Division of EECS Dept. KAIST
moonzoo@cs.kaist.ac.kr
http://pswlab.kaist.ac.kr/courses/cs402-07

Overview

- 2.1 Boolean operators
- 2.2 Propositional formulas
- 2.3 Interpretations
- 2.4 Logical equivalence and substitution
- 2.5 Satisfiability, validity, and consequence
- 2.6 Semantic tableaux
- 2.7 Soundness and completeness

Satisfiability v.s. validity

- Definition 2.24
- A propositional formula A is satisfiable iff $\nu(A)=T$ for some interpretation ν.
- A satisfying interpretation is called a model for A.
- A is valid, denoted $\vDash A$, iff $\nu(A)=T$ for all interpretation ν.
- A valid propositional formula is also called a tautology.
- Theorem 2.25
- A is valid iff $\neg A$ is unsatisfiable.
- A is satisfiable iff $\neg A$ is falsifiable.

True in some interpretations;

Satisfiability v.s. validity

Definition 2.26

- Let \mathcal{V} be a set of formulas. An algorithm is a decision procedure for \mathcal{V} if given an arbitrary formula $A \in \mathcal{F}$, it terminates and return the answer 'yes' if $A \in \mathcal{V}$ and the answer 'no' if $\mathrm{A} \notin \mathcal{V}$
- By theorem 2.25, a decision procedure for satisfiability can be used as a decision procedure for validity.
- Suppose \mathcal{V} is a set of all satisfiable formulas
- To decide if A is valid, apply the decision procedure for satisfiability to $\neg \mathrm{A}$

This decision procedure is called a refutation procedure

Satisfiability v.s. validity

- Example 2.27 Is $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$ valid?

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$
T	T	T	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

- Example 2.28 p V q is satisfiable but not valid

Logical consequence

- Definition 2.30 (extension of satisfiability from a single formula to a set of formulas)
- A set of formulas $U=\left\{A_{1}, \ldots A_{n}\right\}$ is (simultaneously) satisfiable iff there exists an interpretation ν such that ν $\left(A_{1}\right)=\ldots=\nu\left(A_{n}\right)=T$.
- The satisfying interpretation is called a model of U.
- U is unsatisfiable iff for every interpretation ν, there exists an i such that $\nu\left(A_{i}\right)=F$.

Logical consequence

- Let U be a set of formulas and A a formula. If A is true in every model of U, then A is a logical consequence of U.
- Notation: U $=\mathrm{A}$
- If U is empty, logical consequence is the same as validity
- Theoem 2.38
- $\mathrm{U} \vDash \mathrm{A}$ iff $\vDash \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{A}$ where $\mathrm{U}=\left\{\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}}\right\}$
- Note Theorem 2.16
$A_{1} \equiv A_{2}$ if and only if $A_{1} \leftrightarrow A_{2}$ is true in every interpretation

Theories

- Logical consequence is the central concept in the foundations of mathematics
- Valid formulas such as $p \vee q \leftrightarrow q \vee p$ are trivial and not interesting
- Ex. Euclid assumed five formulas about geometry and deduced an extensive set of logical consequences.
- Definition 2.41
- A set of formulas \mathcal{T} is a theory if and only if it is closed under logical consequence.
- \mathcal{T} is closed under logical consequence if and only if for all formula A, if $\mathcal{T} \vDash A$ then $A \in \mathcal{T}$.
- The elements of \mathcal{T} are called theorems
- Let U be a set of formulas. $\mathcal{T}(U)=\{A \mid U \vDash A\}$ is called the theory of U. The formulas of U are called axioms and the theory $\mathcal{T}(U)$ is axiomatizable.
- Is $\mathcal{T}(U)$ theory?

Examples of theory

- $U=\{p \vee q \vee r, q \rightarrow r, r \rightarrow p\}$
- Interpretation v_{1}, v_{3} and v_{4} are models of U
- Which of the followings are true?
- UFp
- $U \vDash q \rightarrow r$
- UFrV $\quad \mathrm{q}$
- $\mathrm{U} \vDash \mathrm{p} \wedge \neg \mathrm{q}$
- Theory of U, i.e, $\mathcal{T}(U)$
- $\mathrm{U} \subseteq \mathcal{T}(\mathrm{U})$
because for all formula $A \in U, A \vDash A$
- $\mathrm{p} \in \mathcal{T}(\mathrm{U})$
because $\mathrm{U} \vDash \mathrm{p}$
- $\mathrm{q} \rightarrow \mathrm{r} \in \mathcal{T}(\mathrm{U})$ because $\mathrm{U} \vDash \mathrm{q} \rightarrow \mathrm{r}$
- $\mathrm{p} \wedge(\mathrm{q} \rightarrow \mathrm{r}) \in \mathcal{T}(\mathrm{U})$

	p	q	r	$\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}$	$\mathrm{q} \rightarrow \mathrm{r}$	$\mathrm{r} \rightarrow \mathrm{p}$
V_{1}	T	T	T	T	T	T
v_{2}	T	T	F	T	F	T
v_{3}	T	F	T	T	T	T
v_{4}	T	F	F	T	T	T
v_{5}	F	T	T	T	T	F
v_{6}	F	T	F	T	F	T
v_{7}	F	F	T	T	T	F
v_{8}	F	F	F	F	T	T

- because $U \vDash p \wedge(q \rightarrow r)$

Ex. Theory of Euclidean geometry

- A set of 5 axioms $U=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ such that
- $\quad \mathrm{A}_{1}$:Any two points can be joined by a unique straight line.
- $\quad \mathrm{A}_{2}$:Any straight line segment can be extended indefinitely in a straight line.
- A_{3} :Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
- $\mathrm{A}_{4}:$ All right angles are congruent.
- $\quad A_{5}$:For every line I and for every point P that does not lie on $/$ there exists a unique line m through P that is parallel to l.
- Euclidean theory $\mathcal{T}_{\text {Euclid }}=\mathcal{T}(\mathrm{U})=\{\mathrm{A} \mid \mathrm{U} \vDash \mathrm{A}\}$
- I.e., $\mathcal{T}_{\text {euclid }}$ is axiomatizable by the above 5 axioms
- Ex. one logical consequence of the axioms given a line segment $A B$, an equilateral triangle exists that includes the segment as one of its sides.

Ex2. Model checking (formal verification)

- A file system M can be specified by the following 7 formulas (i.e., a file system model $M=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}$)
- A_{1} :A file system object has one or no parent. sig FSObject \{ parent: lone Dir \}
- $A_{2}:$ A directory has a set of file system objects sig Dir extends FSObject \{ contents: set FSObject \}
- $A_{3}: A$ directory is the parent of its contents
- fact defineContents \{all d: Dir, o: d.contents \mid o.parent $=\mathrm{d}\}$
- A_{4} : A file in the file system is a file system object sig File extends FSObject \{\}
- A_{5} : All file system objects are either files or directories fact fileDirPartition $\{$ File + Dir $=$ FSObject $\}$
- A_{6} : There exists only one root

- A_{7} : File system is connected
fact fileSystemConnected \{ FSObject in Root. ${ }^{*}$ contents \}
- We can prove that this file system does not have a cyclic path
- A: No cyclic path exists
- assert acyclic \{no d: Dir \| d in d. ${ }^{\wedge}$ contents \}
- $M \vDash A$ (i.e., this file system M does not have cyclic path)

