Moonzoo Kim
CS Dept. KAIST

CREST Tutorial

_j crest

“._— automatic test generation fool for C

Project Home Downloads Wiki Issues Source
Summary | Updates | People

CREST is anjautomnatic test generation tool for g

It works by inserting instrumentation code (using CIL) into a target program togpedorm symbolic execution concurrently with
the concrete execution. The generated symbolic constraints are solved (using to generate input that drive the test
execution down new, unexplored program paths.

CREST currently reasons symbolically only abnu[llinear, integer arithmetic_lZREST should be usable on any modern Linux
system. It is usable on recent Mac O5 X versions, as well, although some small modifications are needed for the code to

build.

For further building and usage information, see the README file. You may also want to check out the FAQ.

Further questions? Contact Jacob Burnim (jburnim at cs dot berkeley dot edu) or e-mail the CREST-users mailing list
(CREST-users at googlegroups.com).

A short paper and tech report about some of the search strategies in CREST are available at the homepage of Jacob
Burnim.

News: CREST 0.1.1 is now available. It can be downloaded from the Downloads section (or the menu bar on the right). This
is a bug fix release -- the biggest change is a fix for incorrect instrumentation for functions returning structures by value.

CREST

e CREST is a concolic testing tool for C programs
— Generate test inputs automatically
— Execute target under test on generated test inputs

— Explore all possible execution paths of a target
systematically

 CREST is a open-source re-implementation of CUTE

— mainly written in C++

e CREST’s instrumentation is implemented as a module of CIL(C Intermetiate
Language) written in Ocaml

KAIST

C source
»

Instrumented

Legend

Source
code

External
tool

CREST

yices

3/20

Overview of CREST code

CIL

code

constraint

m—)

next input

B @ cil/src/ext/crestinstrument.ml

¥
.

run_crest

src/libcrest/crest.cc
src/base/symbolic_interpreter.cc

CREST symbolic src/base/symbolic_execution.cc
execution library

src/base/symbolic_expression.cc
src/base/symbolic_path.cc
src/base/symbolic_predicate.cc

src/run_crest/run_crest.cc
src/run_crest/concolic_search.cc
src/base/yices_solver.cc
src/base/symbolic_execution.cc
src/base/symbolic_expression.cc
src/base/symbolic_path.cc
src/base/symbolic_predicate.cc
src/base/basic_types.cc

Moonzoo Kim MIST

SWTV Group

4 Main Steps of Concolic Testing

1. Instrumentation of a target program
— To insert probes to build symbolic path formula

Preprocessor of
Concolic Testing:
CIL and Ocaml

2. Transform a constructed symbolic path
formula to SMT-compatible format

— SMT solvers can solve simple formula only

Back-end Engine of
Concolic Testing:
SMT solver and API
Application in CREST

3. Select one branch condition to negate

— Core technique impacting both effectiveness
and efficiency

Real-world Concolic
Testing 1: Memory

model and CFG
algorithm

4. Invoking SMT solvers on the SPF SMT
formula

— Selection of a SMT solver and proper
configuration parameters

Real-world Concolic
Testing 2: Hybrid
Concolic + Genetic

and distributed DFS
algorithm

4 Main Tasks of Human Engineers

1. Adding proper assert() statements

— W/o assert(), no test results obtained
2. Selection of symbolic variables in a
target program

— ldentify which parts of a target program
are most important

3. Construction of symbolic external
environment

— To detect real bugs

4. Performance tuning and debugging
— To obtain better concolic testing results

SAT based
Automated
Program Analysis
Technique: a
Case Study on
Flash Memory
File System

Real-world case
study: Libexif
(system level
testing) and
security lib (unit
level testing)

1 #include <crest.h>

2 main() {

3 inta,b,c, match=0;

4 CREST int(a); CREST int(b); CREST_int(c);
// filtering out invalid inputs

ifa<=0|] b<=0 || c<=0) exit();
printf("a,b,c = %d,%d,%d:",a,b,c);

//0: Equilateral, 1:lsosceles,
// 2: Not a traiangle, 3:Scalene
9 intresult=-1;

10 if(a==b) match=match+1;

11 if(a==c) match=match+2;
12 if(b==c) match=match+3;
13 if(match==0) {

14 if(a+b <= c) result=2;

15 else if(b+c <= a) result=2;
16 else if(a+c <= b) result =2;
17 else result=3;

18 }else{

19 if(match == 1) {

20 if(a+b <= c) result =2;
21 else result=1;

22 } else {

23 if(match ==2) {

24 if(a+c <=b) result = 2;
25 else result=1;

26 }else {

27 if(match==3) {

28 if(b+c <= a) result=2;
29 else result=1;

30 } else result = 0;

31 Hh

32 printf("result=%d\n",result);
33}

“Software Testing
a craftsman’s
approach” 2nd ed
by P.C.Jorgensen
(no check for
positive inputs)

Equilateral

Inputa, b, c

match=0

maich =
malch+1

maich =
matchs2

match = 6
match+3

y N

ViyRarHe]™

C\ PITaYETa

Concolic Testing the Triangle Program

Test Input Executed path Next PC Solution for
case b,c) | conditions (PC) the next PC

111 a=b A a=c A b=c a=b A a=c A b#c Unsat
a=b A a%c 1,12

2 1,1,2 a=b A a#c A b#c A a+b <c a=b A azc A b#c A a+b >c 2,2,3
2,23 a=b A azc A bzc A a+b >c a=b A azc A b=c Unsat

a=b 2,1,2

4 2,12 a#b A a=c A bzc A a+c>b azbA a=c A bzc A a+c<b 2,52

a=c
b=c

a+c>b
74

Moonzoo Kim KAIST

SWTV Group

CREST Commands

crestc <filename>.c
— Qutput
e <Filename>_cil.c //instrumented C file
e branches// lists of paired branches
o« <fFi1lename> // executable file
run_crest ./filename <n> -[dfs|cfg|random]r
andom_1nput|hybrid]
— <n>: # of iterations/testings
— dTfs: depth first search (but in reverse order)
— cTg: uncovered branch first
— random: negated branch is randomly selected
— random_1nput: pure random input
— hybrid: combination of dfs and random

KAIST

Instrumented C Code

#line 10

{ /* Creates symbolic expression a==b */
__CrestLoad(36, (unsigned long)(& a), (long long)a);
__CrestLoad(35, (unsigned long)(& b), (long long)b);
__CrestApply2(34, 12, (long long)(a == b));

if (@a==Db) {

__CrestBranch(37, 11, 1); //extern void __CrestBranch(int id , int bid , unsigned char b))
__CrestLoad(41, (unsigned long)(& match), (long long)match);

__CrestLoad(40, (unsigned long)0, (long long)1);

__CrestApply2(39, 0, (long long)(match + 1));

__CrestStore(42, (unsigned long)(& match));

match ++;

} else {
__CrestBranch(38, 12, 0);

b}

Moonzoo Kim KAIST

SWTV Group

Execution Snapshot

[moonzoo@verifier crest]$ run_crest ./triangle 10000 -dfs

Iteration O (Os): covered 0 branches [0 reach funs, 0 reach branches].
Iteration 1 (0s): covered 1 branches [1 reach funs, 32 reach branches].
Iteration 2 (0s): covered 3 branches [1 reach funs, 32 reach branches].
Iteration 3 (0s): covered 5 branches [1 reach funs, 32 reach branches].
a,b,c=1,1,1:result=0

Iteration 4 (0s): covered 13 branches [1 reach funs, 32 reach branches].
a,b,c=2,1,1:result=2

Iteration 5 (0s): covered 17 branches [1 reach funs, 32 reach branches].
a,b,c=2,1,2:result=1

Iteration 6 (0s): covered 20 branches [1 reach funs, 32 reach branches].
a,b,c=1,2,1:result=2

Iteration 7 (0s): covered 21 branches [1 reach funs, 32 reach branches].
a,b,c=3,2,1:result=2

Iteration 8 (0s): covered 24 branches [1 reach funs, 32 reach branches].
a,b,c=2,1,3:result=2

Iteration 9 (0s): covered 25 branches [1 reach funs, 32 reach branches].
a,b,c =4,3,2:result=3

Iteration 10 (0s): covered 27 branches [1 reach funs, 32 reach branches].

a,b,c=2,3,1:result=2

Iteration 11 (0s): covered 28 branches [1 reach funs, 32 reach branches].

a,b,c =3,2,2:result=1

Iteration 12 (0s): covered 29 branches [1 reach funs, 32 reach branches].

a,b,c=2,2,1:result=1

Iteration 13 (0s): covered 31 branches [1 reach funs, 32 reach branches].

a,b,c=1,1,2:result=2

Iteration 14 (0s): covered 32 branches [1 reach funs, 32 reach branches].

elapsed time = 0.0015093

[moonzoo@verifier crest]$ cat coverage
3 /* covered branch ids*/

Supported Symbolic Datatypes

#define CREST _unsigned_char(x) _ CrestUChar(&x)
#tdefine CREST _unsigned_short(x) _ CrestUShort(&x)
#define CREST _unsigned_int(x) _ CrestUInt(&x)
#tdefine CREST char(x) _ CrestChar(&x)

#tdefine CREST short(x) CrestShort(&x)

#tdefine CREST int(x) CrestInt(&x)

KAIST

Decision/Condition Coverage Analysis

by CREST

1 1int main(Q){

oO~NO O WN

int A, B, C, D;

if (A& B || C && D){

printf("'Yes\n");
Yelse{

printf(**'No\n"");
s

CREST consider all
possible cases with
short-circuit

Thus, coverage
reported by CREST
might be lower than
actual branch
coverage

1

if (A 1= 0) {

_ CrestBranch(5, 2, 1); A==T

if (8 '=0) {

}

}

_ CrestBranch(10, 3, 1);A==T&& B ==T

printf('Yes\n");
else {

__CrestBranch(11, 4, 0); A==T&&B!=T

goto _L;

} else {

}

__ CrestBranch(6, 5, 0)A I= TRUE

_L: /* CIL Label */
if (C1=0) {

}

}

__CrestBranch(16, 6, 1);&& C==T

if (D 1= 0) {

_ CrestBranch(21, 7, 1); g o Cc == T&& D =:

printf('Yes\n");
} else {

_ CrestBranch(22, 8, 0); (A!=T||A==T &8

printf(*No\n'");
¥

else {

_ CrestBranch(17, 9, 0); (A!=T|[A==T && B

printf(**'No\n"");

A!=T||A==T &&B

(AI=T||A==T &8

QA C==T&&A D !=

&&KAC!I=T

	CREST Tutorial
	CREST
	Overview of CREST code
	4 Main Steps of Concolic Testing
	4 Main Tasks of Human Engineers
	슬라이드 번호 6
	Concolic Testing the Triangle Program
	CREST Commands
	Instrumented C Code
	Execution Snapshot
	Supported Symbolic Datatypes
	Decision/Condition Coverage Analysis by CREST

