Industrial Application of Concolic Testing
to Detect Crash Bugs
- A Case Study on libexif

Yunho Kim, Moonzoo Kim, Youngloo Kim, and Yoonkyu Jang
Provable SW Lab, KAIST, Samsung Electronics
South Korea

KAIST ™

Content

 Motivation and project scope
o libexiT case study

e Lessons learned and conclusion

KAIST

Main Talk Summary

* Industry builds products based on OSS heavily

* Concolic testing is a good technique for testing
open source programs with modest effort

— We applied concolic testing to an open-source
program I 1bex1T and detected 6 crash bugs in 4

man-week (reported 2 security bugs to CVE)

THE

T JLINUX

FOUNDATION

6}

danNn>=X0ID

Motivation

Effective SW code testing is expensive

—Test oracle should be defined
e Explicit high-level requirements are necessary

e Target code knowledge is necessary to insert
concrete low-level assert

— High test coverage should be achieved

 Deep understanding of target code is necessary
to write test cases that achieve high coverage

KAIST

Problems in the Current Industrial Practice (1/2)

e [ndustry uses many open source software(OSS)
in their smartphone platforms

— Samsung’s cases: Android(30+ OSS packages),
Tizen(40+ OSS packages)

e Most of OSS are shipped in smartphones
without high quality assurance

5/70 Provable SW Lab KAIST

Problems in the Current Industrial Practice (2/2)

* |Industry does not have enough resources to test open
source program code due to time constraints

— Field engineers do not have deep knowledge of target
program code

— Writing effective test cases is a time-consuming task

Automated software testing techniques with

modest testing setup effort to test open
source program

6/70 Provable SW Lab MIST

Project Scope

Goal: To evaluate effectiveness and efficiency of concolic testing for
testing open source programs

Our team: 1 professor, 2 graduate students, and 1 Samsung
Electronics senior engineer

— Total M/M: 4 persons x 1 week

We tested an open source program I 1bexiT used by Samsung
smart phones

— B 1bex1T consists of 238 functions in C (14KLOC, 3696 branches)

We used CREST-BV and KLEE as concolic testing tools and Coverity
Prevent as a static analysis tool

— We compared CREST-BV and Coverity Prevent in terms of bug detection
capability

— We compared the two concolic testing tools in terms of TC generation
speed and bug detection capability

7/70 Provable SW Lab KAIST

CREST-BV and KLEE

e CREST-BV and KLEE are concolic testing tools
— They can analyze target C programs
— They are open source tools

* CREST-BV

— An extended version of CREST with bit-vector support

— Instrumentation-based concolic testing tool
* Insert probes to extract symbolic path formula

 KLEE

— Implemented on top of the LLVM virtual machine
 Modify VM to extract symbolic path formula

— Implements POSIX file system environment model

KAIST

Effectiveness of Concolic Testing

* Concolic testing is effective to detect hidden bugs
in open-source programs with modest effort

— We took only 1 week to detect 6 crash bugs in
1 1bexi1T without background of the target program

— Previous case studies

e Industrial Application of Concolic Testing on Embedded
Software: Case Study, ICST 2012

e Concolic Testing of the Multi-sector Read Operation for Flash
Storage Platform Software, FACJ 2012

* Concolic testing was more effective than static
analysis in this project

— All the detected bugs were not detected by Coverity
Prevent

9/70 Provable SW Lab KAIST

EXchangeable Image file Format(EXIF)

e EXIF is a standard that specifies metadata for
image and sound files

10/70

EXIF defines image
structure, characteristics,

Width 200 '« and picture-taking
Height | 430 conditions
Date 110522
Maker note is manufacturer-
specific metadata
1SO 200 — Camera manufacturgs define a
large number of their own
Focus maker note tags

Al Focus «

— Ex. Canon has 400+ tags, Fuji
has 200+ tags, and so on

— No standard

Provable SW Lab KAIST

TIFF Header
0th IFD for ImageWidth
Primary Image
Data | = e
StripOffsets

Xl

Exif IFD Pointer

GPS IFD Pointer

Lt

Next IFD Pointer

.... Value of Oth IFD

v

Exif IFD Exif Version
(Exif Private
Tag) DateTimeDigitized
.... Value of Exif IFD
GPS IFD GPS Version
(GPS Info Tag)
....Value of GPS IFD
1st IFD for ImageWidth
Thumbnail Data
StripOffsets

A

.... Value of 1stIFD

Thumbnail Data

Primary Image
Data

Strip 1
Strip 2

A

12/2/2034/70

A

f A

Tag Mame

Field Name

A. Tags relating to image data structure

Image width

Image height

Number of bits per component
Compression scheme
Pixel composition
Onentation of image
Number of components
Image data arrangement
Subsampling ratio of Y to C
Y and C positioning

Image resolution in width
direction

Image resolution in height
direction

Unit of X and Y resolution

ImageWidth
ImagelLength
BitsPersample
Compression
Photometricinterpretation
Orentation
SamplesPerPixel
PlanarConfiguration
YCbCrSubSampling

Y CbCrPositioning

XResolution

YResolution

ResolutionUnit

B. Tags relating to recording offset

Image data location
Number of rows per strip
Bytes per compressed strip
Offset to JPEG SOI

Bytes of JPEG data

StripOffsets

RowsPerStrip

StripByteCounts
JPEGInterchangeFormat
JPEGInterchangeFormatLength

C. Tags relating to image data characteristics

Transfer function

TransferFunction

White point chromaticity WhitePoint
Chromaticities of primaries PrimaryChromaticities
Color space transformation - ;
matrix c?oefficients YCbCrCoefficients
Pair of black and white ReferenceBlackWhite
reference values

D. Other tags
File change date and time DateTime
Image title ImageDescription
Image input equipment Make
manufacturer
Image input equipment model Model
Software used Software
Person who created the image Arfist
Copyright holder Copyright

KAIST

Test Experiment Setting

e Max time is set to 15, 30 and 60 minutes

e We used test-mnote.cin libexitasa
test driver program

e HW setting
— Intel Core2duo 3.6 GHz, 16GB RAM running Fedora
9 64bit

KAIST

Testing Strategies

 Open source oriented approach for test oracles
— Focusing on runtime failure/crash bugs only

* Null-pointer dereference, divide-by-zero, out-of-bound
memory accesses, etc

* How to setup effective and efficient symbolic
input?
1. Baseline concolic testing

2. Focus on the maker note tags with concrete image
files

KAIST

Baseline Concolic Testing

e [nput EXIF metadata size fixed at 244 bytes

— Minimal size of a valid EXIF metadata generated by
a test program in l1bexi T

e 244 bytes long
€@ minimal symbolic
input file

. —~

In CREST-BV

l:char array|[244];
2:Ffor (1=0;1<244;1++)
3: sym char(array[i]);

Provable SW Lab KAIST

14/70

Testing Result of Baseline (1/2)

Branch Coverage of CREST-BV and KLEE

(Sum of all search strategies for each tool)

Test case generation speed

(Avg. of the all search strategies for each tool)

25 25
S Q
~ 3+
g, 20 5 20
© @
g 8
S
<
g 10 5 10
< -
)
5 5
0 0 IS 00
CREST-BV KLEE CREST-BV KLEE
m Branch Coverage(%) 223 204 m TC gen. speed 20.6 0.7

 One out-of-bound memory access bugwas o

detected (CVE-2012-2836)

exiT _data load data() in exif-data.c

1:1F (offset + 6 + 2 > ds) { return; }
2:n = exif_get short(d+6+offset, ...)

15/70

KLEE is slower due to

— Overhead of VM

— Complex symbolic execution
features such as symbolic
pointer dereference

Provable SW Lab KAIST _

Testing Result of Baseline (2/2)

 We analyzed uncovered code to improve
branch coverage

— 5 among 238 functions take 27% of total branches

e Baseline concolic testing could not generate
maker notes in a given time

— We focused on maker notes to improve code
coverage

KAIST

Focus on the Maker Note

 Focus on the maker note tags with concrete image

files.
— We used 6 image files from http://exif.org
— We used concrete header and standard EXIF metadata and
set maker note as symbolic inputs

- e Header and
Width | 200 « standard EXIF

Height 430
Date | 110522 metadata are
concrete
1SO 200 e Set maker note

Focus | Al Focus « tags in the image
as symbolic inputs

Provable SW Lab KAIST

17/70

http://exif.org/

Rationale for the Focus on Maker Note

e We expect that the libexif code that handles maker notes is error-prone due
to lack of official specification

 Note that 5 functions among the top 10 largest functions are related to
maker notes

— These 5 functions takes around 27% of total libexif branches

: # of Cum. # of Cum. # of

Rank Function name branches branches l?—%gi?oi;
1| mnote olympus_entry get value 508 508 14.3
2 exif_entry get value 396 904 25.5
3 exif_entry_initialize 204 1108 31.3
4 mnote_canon_entry get value 146 1254 354
) mnote_pentax_entry_get value 140 1394 394
6 exif_entry_fix 140 1534 43.3
7 mnote_fuji_entry get value 100 1634 46.1
8 exif_mnote_data_olympus_load 96 1730 48.8
9 exif loader_write 92 1822 51.4
10 exif data_load data_content 72 1894 53.5

12/2/20313/70 I(AIST

Testing Result of Maker Note (1/2)

Test case generation speed

Branch Coverage of CREST-BV and KLEE

(Sum of all search strategies for each tool)

80

60

40

Branch Coverage(%)

20

0

CREST-BV

KLEE

(Avg. of the all search strategies for each tool)

m Branch Coverage(%)

68.1

49.5

20
0
E 15
5]
(<))
)]
& 10
c
o
5
et
I
0
CREST-BV KLEE
mTC gen. speed 164 13

e KLEE detected 1 null-pointer-dereference

e CREST-BV detected the null-pointer-
dereference bug and 4 divide-by-zero bugs

19/70

Provable SW Lab KAIST

Testing Result of Maker Note (2/2)

* Null-pointer-dereference bug

mnote_canon_tag_get_description() in mnote-canon-tag.c
1: table[] = { ..

2: {MNOTE_CANON_TAG_CUSTOM_FUNCS, '"CustomFunctions",
N_(*"'Custom Functions'™), """},

3: {0, NULL, NULL, NULL} // Last table entry

4:fFor(i1=0;i1<sizeof(table)/sizeof(table[0]);1++)

5: //t i1s a maker note tag read from an image

6: 1T (table[i1]-tag==t) {

7: //Null-pointer dereference occurs when t i1s 0!!!

8: if(1*table[i1].description)

9: return ""'';

e Divide-by-zero bug (CVE-2012-2837)

mnote_olympus_entry_get value() in mnote-olympus-entry.c
l:vr=exif _get rational(...);

2://Added for concolic testing
3:assert(vr.denominator!=0);

4:a = vr.numerator / vr.denominator;

KAIST

Total result (Baseline + MakerNote)

e Different testing strategies improve coverage
e Total # of covered branches: 1717 (46.5%) among 3696

branches in 1.5 days

— 110 branches are covered by only the Baseline strategy

— 734 branches are covered by only the MakerNote strategy

— 873 branches are covered by both

e |In fact, we generated test cases quicker by

using multiple machines

Branches universe

/1979

Strategyl

Strategy?2

110

734

~

KAIST

Comparison between CREST-BV and Prevent

* Prevent failed to detect bugs detected by concolic
testing

— Prevent generated 14 false warnings out of total 15
warnings

 Prevent detected the following null-pointer
dereference bug in 5 minutes

— KLEE/CREST-BV did not detect the bug because our test
driver program does not call the buggy function

CID 10002: Dereference after null check (FORWARD _NULL)
Comparing "loader” to null implies that "loader” might be null.

A if (!loader || {loader->data_format == EL_DATA_FORMAT_UNKNOWN)) {
Dereferencing null vanable "loader”.
A exif_log (loader->log, EXIF_LOG_CODE_DEBUG, "ExiflLoader",

"Loader format unknown™);

KAIST

Summary of the Challenges

e Libexifis a hard target for concolic testing

— Hard to specify assertions

* Requirement specification is very large and complex (182 page official
documents + unofficial maker note specifications)

e Codessize is large (14k LOC) and components are hard to understand

due to strong connectivity
— Hard to generate valid inputs

 Libexif requires strictly structured/formatted input
— If any one byte of an EXIF header input violates EXIT structure, that entire

input is thrown away
— Search space is very large

e 10,000 test cases are too little compared to
a number of all possible execution paths of
a large program such as libexif

* For example, in another study, 700,000
test cases for grep (12k lines) covers
only 42% of branches.

1400

1200

1000

800

600

400

200

Lessons Learned from Real-world Application

* Practical strength of concolic testing

— 1 null-pointer dereference, 1 out-of-bound memory access, and 4
divide-by-zero in 4 man-weeks

— Note that

o libexiTisvery popular OSS used by millions of users
* we did not have background on I 1bexif!!!

 |mportance of testing strategy
— Still state space explosion is a big obstacle
— Average length of symbolic path formula = 100(baseline strategy)
=> |n theory, there can exist 21%° different execution paths

 Advantages of CREST-BV over KLEE and Prevent
— Concolic testing can supplement static analysis

KAIST

	Industrial Application of Concolic Testing to Detect Crash Bugs�- A Case Study on libexif
	Content
	Main Talk Summary
	Motivation
	Problems in the Current Industrial Practice (1/2)
	Problems in the Current Industrial Practice (2/2)
	Project Scope
	CREST-BV and KLEE
	Effectiveness of Concolic Testing
	EXchangeable Image file Format(EXIF)
	Exif structure
	Test Experiment Setting
	Testing Strategies
	Baseline Concolic Testing
	Testing Result of Baseline (1/2)
	Testing Result of Baseline (2/2)
	Focus on the Maker Note
	Rationale for the Focus on Maker Note
	Testing Result of Maker Note (1/2)
	Testing Result of Maker Note (2/2)
	Total result (Baseline + MakerNote)
	Comparison between CREST-BV and Prevent
	Summary of the Challenges
	Lessons Learned from Real-world Application

