Linear Temporal Logic

Moonzoo Kim CS Dept. KAIST

Review: Model checking

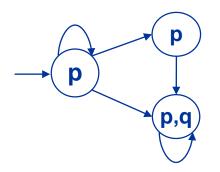
Model checking

- In a model-based approach, the system is represented by a model $\mathcal M$. The specification is again represented by a formula $\phi.$
 - The verification consists of computing whether \mathcal{M} satisfies $\phi \mathcal{M} \models \phi$
 - **Caution:** $\mathcal{M} \models \phi$ represents satisfaction, not semantic entailment

In model checking,

- \blacksquare The model $\mathcal M$ is a transition systems and
- the property ϕ is a formula in temporal logic

 \blacksquare ex. \Box p, \Box q, \diamondsuit q, \Box \diamondsuit q



Motivation for Temporal Logic

So far, we have analyzed sequential programs only

- assert is a convenient way of specify requirement properties
- Safety properties are enough for sequential programs
 - "Bad thing never happens"
 - Ex. Mutual exclusion
- For concurrent programs, we need more than assert to specify important requirement properties conveniently
 - Liveness properties
 - "Good thing eventually happens"
 - Ex. Deadlock freedom
 - Ex. Starvation freedom
- Temporal logic is an adequate logic for describing requirement properties for concurrent system

Motivating Example (1/2)

Mutual exclusion protocol

Quoted from "The art of multiprocessor programing" by M.Herlihy et al, published by Morgan Kaufmann 2008

- Alice and Bob are neighbors, and they share a yard.
- Alice owns a cat and Bob owns a dog.
- Alice and Bob should coordinate that both pets are never in the yard at the same time.
- We would like to design a mutual exclusion protocol to satisfy
 - 1. Mutual exclusion
 - pets are excluded from being in the yard at the same time
 - 2. Deadlock-freedom

- Both pets want to enter the yard, then eventually at least one of them succeeds
- 3. Starvation-freedom/lock-out freedom
 - If a pet wants to enter the yard, it can eventually succeed

Motivating Example (2/2)

- One protocol design: Alice and Bob set up a flag pole at each house
 - Protocol @ Alice
 - 1. Alice raises her flag
 - 2. When Bob's flag is lowered, she unleashes her cat
 - 3. When her cat comes back, she lowers her flag
 - Protocol @ Bob
 - 1. He raises his flag
 - 2. While Alice's flag is raised
 - 1. Bob lowers his flag
 - 2. Bob waits until Alice's flag is lowered
 - 3. Bob raises his flag
 - 3. As soon as his flag is raised and hers is down, he unleashes his dog
 - 4. When his dog comes back, he lowers his flag

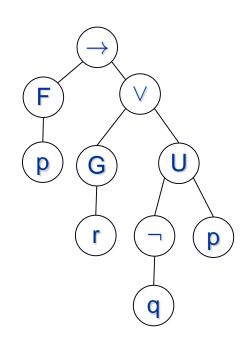
Linear time temporal logic (LTL)

- LTL models time as a sequence of states, extending infinitely into the future
 - sometimes a sequence of states is called a computation path or an execution path, or simply a path
- Def 3.1 LTL has the following syntax
 - $\phi ::= \mathbf{T} \mid \perp \mid \mathbf{p} \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi$ $\mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \cup \phi \mid \phi \mathsf{W} \phi \mid \phi \mathsf{R} \phi$

where p is any propositional atom from some set Atoms

- Operator precedence
 - the unary connectives bind most tightly. Next in the order come U, R, W, \land , \lor , and \rightarrow

 $\textbf{F} \textbf{p} \rightarrow \textbf{G} \textbf{r} \lor \neg \textbf{q} \textbf{U} \textbf{p}$

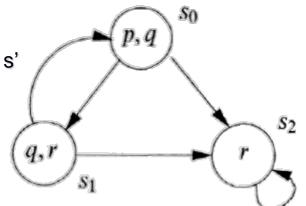


Semantics of LTL (1/3)

Def 3.4 A transition system (called model) $\mathcal{M} = (S, \rightarrow, L)$

- a set of states S
- a transition relation \rightarrow (a binary relation on S)
 - such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$
- a labeling function L: $S \rightarrow P$ (Atoms)
- Example
 - $S = \{s_0, s_1, s_2\}$
 - $\rightarrow = \{(s_0, s_1), (s_1, s_0), (s_1, s_2), (s_0, s_2), (s_2, s_2)\}$
 - L={ $(s_0, \{p,q\}), (s_1, \{q,r\}), (s_2, \{r\})$ }
- Def. 3.5 A path in a model M = (S, →, L) is an infinite sequence of states s_{i1}, s_{i2}, s_{i3},... in S s.t. for each j≥ 1, s_{ij}→ s_{ij+1}. We write the path as s_{i1}→ s_{i2}→ s_{i2}→ ...
 - From now on if there is no confusion, we drop the subscript index i for the sake of simple description
- We write π^i for the suffix of a path starting at s_{i} .

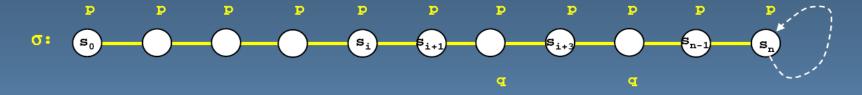
• ex.
$$\pi^3$$
 is $s_3
ightarrow s_4
ightarrow \dots$



Semantics of LTL (2/3)

- Def 3.6 Let *M* = (S, →, L) be a model and π = s₁ → ... be a path in *M*. Whether π satisfies an LTL formula is defined by the satisfaction relation ⊨ as follows:
 - Basics: $\pi \models \top$, $\pi \nvDash \bot$, $\pi \models p$ iff $p \in L(s_1)$, $\pi \models \neg \phi$ iff $\pi \nvDash \phi$
 - Boolean operators: $\pi \vDash p \land q$ iff $\pi \vDash p$ and $\pi \vDash q$
 - similar for other boolean binary operators
 - $\pi \models \mathsf{X} \phi$ iff $\pi^2 \models \phi$ (next \bigcirc)
 - $\pi \vDash \mathbf{G} \phi$ iff for all $i \ge 1$, $\pi^i \vDash \phi$ (always \Box)
 - $\pi \vDash \mathbf{F} \phi$ iff there is some $i \ge 1$, $\pi^i \vDash \phi$ (eventually \Diamond)
 - $\pi \vDash \phi \cup \psi$ iff there is some $i \ge 1$ s.t. $\pi^i \vDash \psi$ and for all j=1,...,i-1 we have $\pi^j \vDash \phi$ (strong until)
 - $\pi \vDash \phi \mathbf{W} \psi$ iff either (weak until)
 - either there is some i \geq 1 s.t. $\pi^i \models \psi$ and for all j=1,...,i-1 we have $\pi^j \models \phi$
 - or for all $k \geq 1$ we have $\pi^k \vDash \phi$
 - $\pi \vDash \phi \mathbf{R} \psi$ iff either (release)
 - either there is some i \geq 1 s.t. $\pi^i \vDash \phi$ and for all j=1,...,i we have $\pi^j \vDash \psi$
 - or for all k \geq 1 we have $\pi^k \vDash \psi$

examples

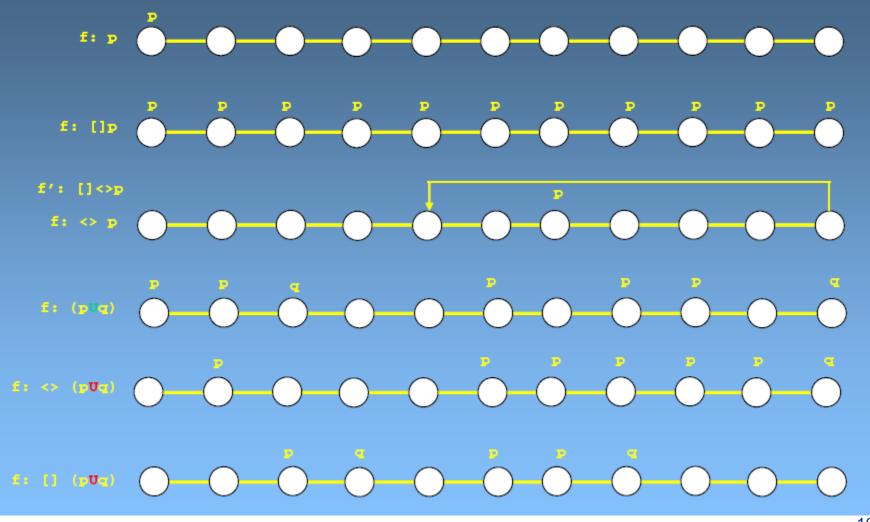


```
[]p is satified at all locations in \sigma
<>p is satisfied at all locations in \sigma
[]<>p is satisfied at all locations in \sigma
<>q is satisfied at all locations except s_{n-1} and s_n
Xq is satisfied at s_{i+1} and at s_{i+3}
pUq (strong until) is satisfied at all locations except s_{n-1} and s_n
<>(pUq) (strong until) is satisfied at all locations except s_{n-1} and s_n
<>(pUq) (weak until) is satisfied at all locations
[]<>(pUq) (weak until) is satisfied at all locations
```

in model checking we are typically only interested in whether a temporal logic formula is satisfied for all runs of the system, starting in the initial system state (that is: at s_0)

slide quoted from Caltech 101b.2 "Logic Model Checking" by Dr.G.Holzmann

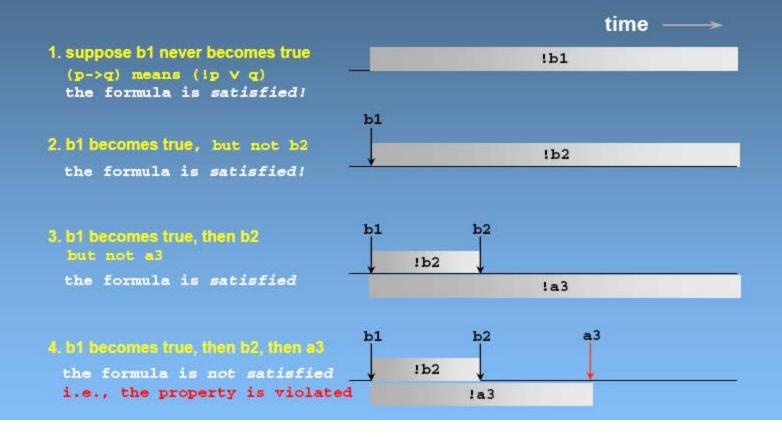
visualizing LTL formulae



slide quoted from Caltech 101b.2 "Logic Model Checking" by Dr.G.Holzman¹⁰

interpreting formulae...

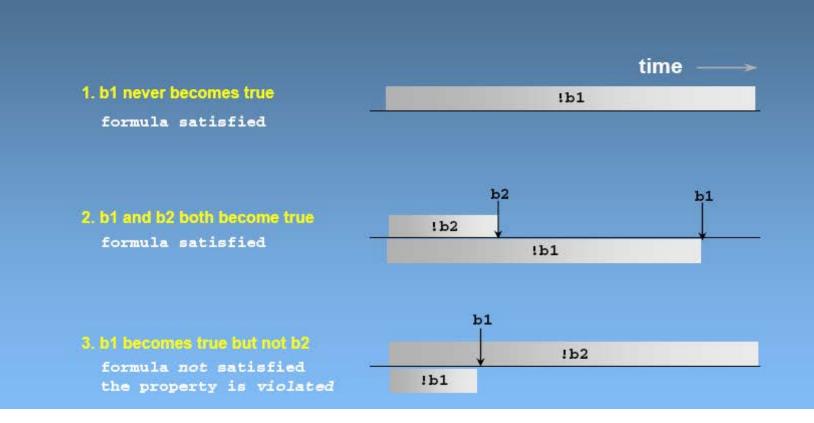
LTL: (<>(b1 && (!b2 U b2))) -> []!a3



slide quoted from Caltech 101b.2 "Logic Model Checking" by Dr.G.Holzmanh

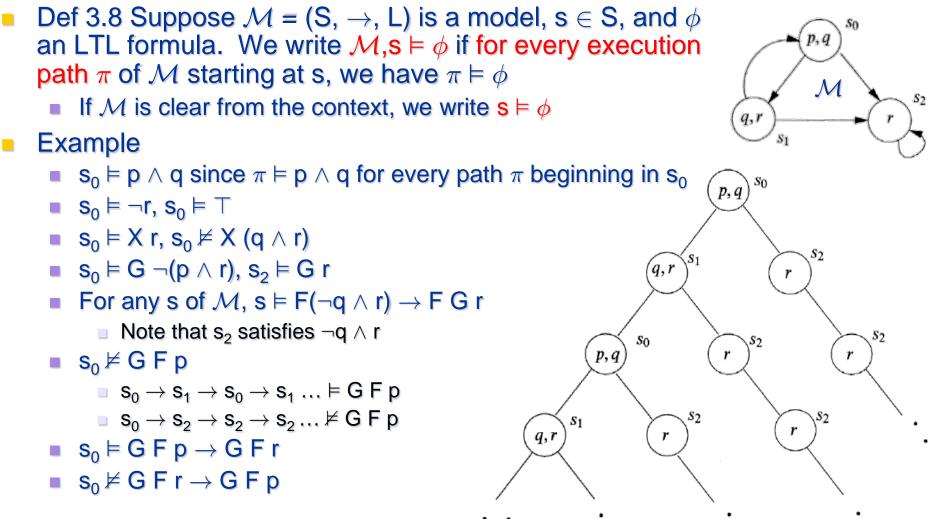
another example

LTL: (<>b1) -> (<>b2)



slide quoted from Caltech 101b.2 "Logic Model Checking" by Dr.G.Holzmanh?

Semantics of LTL (3/3)



Practical patterns of specification

- For any state, if a request occurs, then it will eventually be acknowledged
 - G(requested → F acknowledged)
- A certain process is enabled infinitely often on every computation path
 - G F enabled
- Whatever happens, a certain process will eventually be permanently deadlocked
 - F G deadlock
- If the process is enabled infinitely often, then it runs infinitely often
 - G F enabled \rightarrow G F running
- An upwards traveling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor
 - G (floor2 ∧ directionup ∧ ButtonPressed5 → (directionup U floor5))

- It is impossible to get to a state where a system has started but is not ready
 - $\phi = \mathbf{G} \neg (\mathsf{started} \land \neg \mathsf{ready})$
 - What is the meaning of (intuitive) negation of ϕ ?
 - For every path, it is possible to get to such a state (started \rightarrow ready).
 - There exists a such path that gets to such a state.
 - we cannot express this meaning directly

LTL has limited expressive power

- For example, LTL cannot express statements which assert the existence of a path
 - From any state s, there exists a path π starting from s to get to a restart state
 - The lift can remain idle on the third floor with its doors closed
- Computation Tree Logic (CTL) has operators for quantifying over paths and can express these properties

Summary of practical patterns

Gр	always p	invariance
Fр	eventually p	guarantee
$p \rightarrow (F q)$	p implies eventually q	response
$p \rightarrow$ (q U r)	p implies q until r	precedence
GFp	always, eventually p	recurrence (progress)
FGp	eventually, always p	stability (non- progress)
$F p \rightarrow F q$	eventually p implies eventually q	correlation

Equivalences between LTL formulas

- **Def** 3.9 $\phi \equiv \psi$ if for all models \mathcal{M} and all paths π in \mathcal{M} : $\pi \vDash \phi$ iff $\pi \vDash \psi$
- $\neg \mathbf{G} \phi \equiv \mathbf{F} \neg \phi, \neg \mathbf{F} \phi \equiv \mathbf{G} \neg \phi, \neg \mathbf{X} \phi \equiv \mathbf{X} \neg \phi$
- $\neg (\phi \cup \psi) \equiv \neg \phi \land \neg \psi, \neg (\phi \land \psi) \equiv \neg \phi \cup \neg \psi$
- $F(\phi \lor \psi) \equiv F\phi \lor F\psi$
- **G** $(\phi \land \psi) \equiv$ **G** $\phi \land$ **G** ψ
- $F \phi \equiv T U \phi, G \phi \equiv \bot R \phi$
- $\phi \cup \psi \equiv \phi \cup \psi \wedge F \psi$
- $\phi W \psi \equiv \phi U \psi \lor G \phi$
- $\phi W \psi \equiv \psi R (\phi \lor \psi)$
- $\phi \mathsf{R} \psi \equiv \psi \mathsf{W} (\phi \land \psi)$

Adequate sets of connectives for LTL (1/2)

X is completely orthogonal to the other connectives

- X does not help in defining any of the other connectives.
- The other way is neither possible
- Each of the sets {U,X}, {R,x}, {W,X} is adequate

$$\{U,X\}$$

$$\phi \ R \ \psi \equiv \neg \ (\neg \phi \ U \neg \psi)$$

$$\phi \ W \ \psi \equiv \psi \ R \ (\phi \lor \psi) \equiv \neg \ (\neg \psi \ U \neg (\phi \lor \psi))$$

$$\{R,X\}$$

$$\phi \ U \ \psi \equiv \neg \ (\neg \phi \ R \neg \psi)$$

$$\phi \ W \ \psi \equiv \psi \ R \ (\phi \lor \psi)$$

{W,X}

$$\bullet \ \phi \ \mathsf{U} \ \psi \equiv \neg \ (\neg \ \phi \ \mathsf{R} \neg \ \psi)$$

$$\phi \mathsf{R} \psi \equiv \psi \mathsf{W} (\phi \land \psi)$$

Adequate sets of connectives for LTL (2/2)

- Thm 4.10 $\phi \cup \psi \equiv \neg (\neg \psi \cup (\neg \phi \land \neg \psi)) \land F \psi$
- Proof: take any path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ in any model
 - Suppose $s_0 \models \phi \cup \psi$
 - Let **n** be the smallest number s.t. $s_n \models \psi$
 - We know that such n exists from $\phi \cup \psi$. Thus, $s_0 \models F \psi$
 - For each k < n, $s_k \models \phi$ since $\phi \cup \psi$
 - We need to show $s_0 \models \neg(\neg \psi \cup (\neg \phi \land \neg \psi))$
 - case 1: for all i, $s_i \nvDash \neg \phi \land \neg \psi$. Then, $s_0 \vDash \neg (\neg \psi \cup (\neg \phi \land \neg \psi))$
 - case 2: for some i, $s_i \models \neg \phi \land \neg \psi$. Then, we need to show
 - (*) for each i >0, if $s_i \models \neg \phi \land \neg \psi$, then there is some j < i with $s_i \nvDash \neg \psi$ (i.e. $s_i \models \psi$)
 - Take any i >0 with $s_i \models \neg \phi \land \neg \psi$. We know that i > n since $s_0 \models \phi \cup \psi$. So we can take j=n and have $s_i \models \psi$
 - Conversely, suppose $s_0 \vDash \neg (\neg \psi \cup (\neg \phi \land \neg \psi)) \land F \psi$
 - Since $s_{n} \models F \psi$, we have a minimal **n** as before s.t. $s_{n} \models \psi$
 - case 1: for all i, $s_i \nvDash \neg \phi \land \neg \psi$ (i.e. $s_i \vDash \phi \lor \psi$). Then $s_0 \vDash \phi \cup \psi$
 - case 2: for some i, $s_i \models \neg \phi \land \neg \psi$. We need to prove for any i <n, $s_i \models \phi$
 - Suppose $s_i \nvDash \phi$ (i.e., $s_i \vDash \neg \phi$). Since n is minimal, we know $s_i \vDash \neg \psi$. So by (*) there is some j <i<n with $s_j \models \psi$, contradicting the minimality of n. Contradiction 18

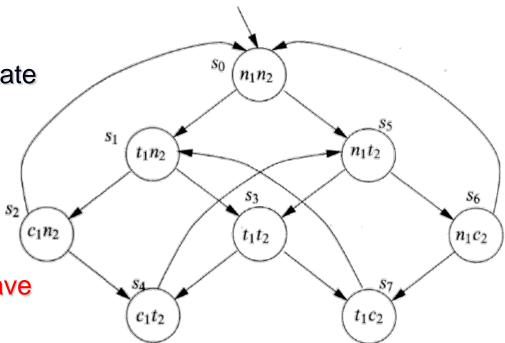
Mutual exclusion example

- When concurrent processes share a resource, it may be necessary to ensure that they do not have access to the common resource at the same time
 - We need to build a protocol which allows only one process to enter critical section
- Requirement properties
 - Safety:
 - Only one process is in its critical section at anytime
 - Liveness:
 - Whenever any process requests to enter its critical section, it will eventually be permitted to do so
 - Non-blocking:
 - A process can always request to enter its critical section
 - No strict sequencing:
 - processes need not enter their critical section in strict sequence

1st model

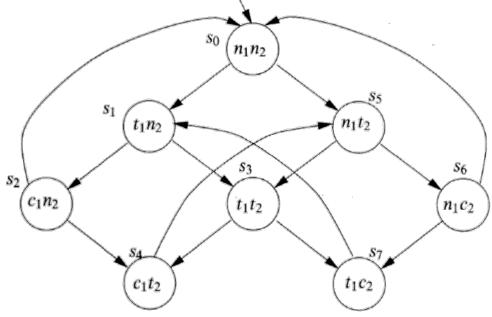
We model two processes

- each of which is in
 - non-critical state (n) or
 - trying to enter its critical state
 (t) or
 - critical section (c)
- No self edges
- each process executes like s_2 $n \rightarrow t \rightarrow c \rightarrow n \rightarrow ...$
 - but the two processes interleave with each other
 - only one of the two processes can make a transition at a time (asynchronous interleaving)



1st model for mutual exclusion

- Safety: $s_0 \models G \neg (c_1 \land c_2)$
- Liveness $s_0 \nvDash G(t_1 \rightarrow F c_1)$
 - See $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_7 \rightarrow s_1 \rightarrow s_3 \rightarrow s_7 \dots$
- Non-blocking
 - for every state satisfying n_i, there is a successor satisfying t_i
 - s₀ satisfies this property
 - We cannot express this property in LTL but in CTL



- Note that LTL specifies that ϕ is satisfied for all paths
- No strict ordering
 - there is a path where c₁ and c₂ do not occur in strict order
 - Complement of this is
 - $\square G(\mathbf{C_1} \rightarrow \mathbf{C_1} \ W \ (\neg \mathbf{C_1} \land \underline{\neg \mathbf{C_1}} \ W \ \mathbf{C_2}))$
 - anytime we get into a c_1 state, either that condition persists indefinitely, or it ends with a non- c_1 state and in that case there is <u>no further c_1 state</u> unless and until we obtain a c_2 state

2nd model for mutual exclusion

All 4 properties are satisfied

- Safety
- Liveness
- Non-blocking
- No strict sequencing

