GNU gcov (1/4) [from Wikipedia]

e QCOV is a source code coverage analysis and statement-
by-statement profiling tool.

e gCoV generates exact counts of the number of times
each statement in a program has been executed

e gcovV does not produce any time-based data (you
should use gproT for this purpose) and works only on
code compiled with the GCC suite.

GNU gcov (2/4)

To use gcov, each source file should be compiled with
-fprofile-arcs and —ftest-coverage, which
generates a . gcno file that is a graph file of the source file.

After the instrumented target program completes its
execution, execution statistics is recorded ina .gcda file.

gcov creates a human readable logfile .gcov from a
binary . gcda file, which indicates how many times each line
of a source file has executed.

gcov [-b] [-c] [-v] [-n] [-1] [-f] [-0 directory] sourcefile

-a: Write individual execution counts for every basic block.
— -b: Write branch frequencies to the output file
— -c: Write branch frequencies as the number of branches taken
— -f: Output summaries for each function in addition to the file level summary.

— -0 The directory where the object files live. Gcov will search for ".bb', ".bbg', and ".da' files in this
directory

GNU gcov (3/4)

« For example, if you measure 1 #include <stdio.h>

coverage of example.c, 2 int main(int argc, char **argv){
int i=0,j=0;
if (argc < 2) {

printf("Usage:.. #Wn");exit(-1);}
| = atoi(argv[1]);
printf("i=%dWn",i);

[moonzoo@verifier gcov]$ |

[moonzoo@verifier gcov]$ gcc -fprofile-arcs
-ftest-coverage example.c

[moonzoo@verifier gcov]$ a.out 5

3
4
5
example.c 6
7
8
9

: if(i == 0)

=5 10 j=0;

J=2 11 else {
[moonzoo@verifier gcov]$ gcov -b example.c 12 if i ==1)

File 'example.c’ 13 J=1,

Lines executed:78.57% of 14 14 if(>18&8& i< 10)
Branches executed:100.00% of 10 15]=2;

Taken at least once:50.00% of 10 16 }

Calls executed:60.00% of 5 17 printf("j=%d%n" j);

example.c:.creating 'example.c.gcov' 18 }

- O:Source:example.c
COV - Q:Graph: example.gcno
- 0:Data:example_gcda
- Szgggsr%ms 1
1 #include <stdio.h> Executed - 1:#|nglude <stdig.h>
2 imt mainit g, char **argu| function | T8BS BB BGALAS] Jyketrnee
3 int 1=0j=0; . 1: 2:1nt main(int argc,
4 if (argc < 2) { , info char **argv){
5 printf("Usage:..#n");exit(-1);} % 2- int 1=0, J_Oé) c
g Ianigfn:@cf/g&/@]).. i; N d branch 0 taken 0% Sfalfthrough)
8 P =7 n,l ot execute \\h@‘ngg##%ﬁ tal_<en 100¢
9 if(i==0) _ printf(*'Usage:.\n"); eX|t(1):}
10 j=0; Call info —tcall 0 néver exécuted
17 eBe{' call % neveg executg%OI(argv[l])
1% ﬁ(lzz 1) call 2 retu;ned 100%
]= _ 1
i rintfC'1=%d\n
1‘5‘ f('._>2? && i< 10) Non-executable R i nraed’ 100%
e 3 statement i 8
17 rintf("j=%dwn" j); branch 0 taken 0% faflthroug%)
18 P J i branch 1 taken 100%
) Hitt: o 10: j=0:
- 11: else #
" " . _ 1: 12: (i 1)
Note that a "branch" for gcov is anything that prancy 2 %gzgﬂ 0% gfallthrough)
causes the code to execute non-straight line A %2; 1&é|<10)
Conditional statement with a compound branch 2'%3222'%90% (falfthrough)
condition (i.e., a Boolean formula containing branch % %gzgﬂ %00% (fal I'through)
&& or | |) has more than 2 branches 12 15 y J=2;
Branch ian .for printf("i—%d\nz,J), 0
each condition | call 9 retyrned 100%

	GNU gcov (1/4) [from Wikipedia]
	GNU gcov (2/4)
	GNU gcov (3/4)
	GNU gcov (4/4)

