
GNU gcov (1/4) [from Wikipedia]

• gcov is a source code coverage analysis and statement-
by-statement profiling tool.

• gcov generates exact counts of the number of times
each statement in a program has been executed

• gcov does not produce any time-based data (you
should use gprof for this purpose) and works only on
code compiled with the GCC suite.

GNU gcov (2/4)
• To use gcov, each source file should be compiled with
-fprofile–arcs and –ftest-coverage, which
generates a .gcno file that is a graph file of the source file.

• After the instrumented target program completes its
execution, execution statistics is recorded in a .gcda file.

• gcov creates a human readable logfile .gcov from a
binary.gcda file, which indicates how many times each line
of a source file has executed.

• gcov [-b] [-c] [-v] [-n] [-l] [-f] [-o directory] sourcefile
– -a: Write individual execution counts for every basic block.
– -b: Write branch frequencies to the output file
– -c: Write branch frequencies as the number of branches taken
– -f: Output summaries for each function in addition to the file level summary.
– -o The directory where the object files live. Gcov will search for `.bb', `.bbg', and `.da' files in this

directory

GNU gcov (3/4)

• For example, if you measure
coverage of example.c,

[moonzoo@verifier gcov]$ l
example.c
[moonzoo@verifier gcov]$ gcc -fprofile-arcs

-ftest-coverage example.c
[moonzoo@verifier gcov]$ a.out 5
i=5
j=2
[moonzoo@verifier gcov]$ gcov -b example.c
File 'example.c'
Lines executed:78.57% of 14
Branches executed:100.00% of 10
Taken at least once:50.00% of 10
Calls executed:60.00% of 5
example.c:creating 'example.c.gcov'

1 #include <stdio.h>
2 int main(int argc, char **argv){
3 int i=0,j=0;
4 if (argc < 2) {
5 printf("Usage:…\n”);exit(-1);}
6 i = atoi(argv[1]);
7 printf("i=%d\n",i);
8
9 if(i == 0)

10 j=0;
11 else {
12 if (i == 1)
13 j=1;
14 if (i > 1 && i < 10)
15 j=2;
16 }
17 printf("j=%d\n",j);
18 }

GNU gcov (4/4)

Not executed

Non-executable
statement

Call info

1 #include <stdio.h>
2 int main(int argc, char **argv){
3 int i=0,j=0;
4 if (argc < 2) {
5 printf("Usage:…\n”);exit(-1);}
6 i = atoi(argv[1]);
7 printf("i=%d\n",i);
8
9 if(i == 0)
10 j=0;
11 else {
12 if (i == 1)
13 j=1;
14 if (i > 1 && i < 10)
15 j=2;
16 }
17 printf("j=%d\n",j);
18 }

-: 0:Source:example.c
-: 0:Graph:example.gcno
-: 0:Data:example.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>

function main called 1 returned
100% blocks executed 71%

1: 2:int main(int argc,
char **argv){

1: 3: int i=0,j=0;
1: 4: if (argc < 2) {

branch 0 taken 0% (fallthrough)
branch 1 taken 100%

#####: 5:
printf("Usage:…\n");exit(-1);}
call 0 never executed
call 1 never executed

1: 6: i=atoi(argv[1]);
call 0 returned 100%

1: 7:
printf("i=%d\n",i);
call 0 returned 100%

-: 8:
1: 9: if(i == 0)

branch 0 taken 0% (fallthrough)
branch 1 taken 100%

#####: 10: j=0;
-: 11: else {
1: 12: if (i == 1)

branch 0 taken 0% (fallthrough)
branch 1 taken 100%

#####: 13: j=1;
1: 14: if(i>1&&i<10)

branch 0 taken 100% (fallthrough)
branch 1 taken 0%
branch 2 taken 100% (fallthrough)
branch 3 taken 0%

1: 15: j=2;
-: 16: }
1: 17:

printf("j=%d\n",j);
call 0 returned 100%

1: 18:}

Branch info for
each condition

Note that a "branch" for gcov is anything that
causes the code to execute non-straight line

Conditional statement with a compound
condition (i.e., a Boolean formula containing
&& or ||) has more than 2 branches

Executed
function
info

	GNU gcov (1/4) [from Wikipedia]
	GNU gcov (2/4)
	GNU gcov (3/4)
	GNU gcov (4/4)

