GNU gcov (1/4) [from Wikipedia]

e QCOV is a source code coverage analysis and statement-
by-statement profiling tool.

e gCoV generates exact counts of the number of times
each statement in a program has been executed

e gcovV does not produce any time-based data (you
should use gproT for this purpose) and works only on
code compiled with the GCC suite.
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To use gcov, each source file should be compiled with
-fprofile-arcs and —ftest-coverage, which
generates a . gcno file that is a graph file of the source file.

After the instrumented target program completes its
execution, execution statistics is recorded ina .gcda file.

gcov creates a human readable logfile .gcov from a
binary . gcda file, which indicates how many times each line
of a source file has executed.

gcov [-b] [-c] [-v] [-n] [-1] [-f] [-0 directory] sourcefile

-a: Write individual execution counts for every basic block.
— -b: Write branch frequencies to the output file
— -c: Write branch frequencies as the number of branches taken
— -f: Output summaries for each function in addition to the file level summary.

— -0 The directory where the object files live. Gcov will search for ".bb', ".bbg', and ".da' files in this
directory
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« For example, if you measure 1 #include <stdio.h>

coverage of example.c, 2 int main(int argc, char **argv){
int i=0,j=0;
if (argc < 2) {

printf("Usage:.. #Wn");exit(-1);}
| = atoi(argv[1]);
printf("i=%dWn",i);

[moonzoo@verifier gcov]$ |

[moonzoo@verifier gcov]$ gcc -fprofile-arcs
-ftest-coverage example.c

[moonzoo@verifier gcov]$ a.out 5

3
4
5
example.c 6
7
8
9

: if(i == 0)

=5 10 j=0;

J=2 11 else {
[moonzoo@verifier gcov]$ gcov -b example.c 12 if i ==1)

File 'example.c’ 13 J=1,

Lines executed:78.57% of 14 14 if(>18&8& i< 10)
Branches executed:100.00% of 10 15 ]=2;

Taken at least once:50.00% of 10 16 }

Calls executed:60.00% of 5 17 printf("j=%d%n" j);

example.c:.creating 'example.c.gcov' 18 }
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