
Introduction to Software Testing
Chapter 3.2 Logic Coverage

Paul Ammann & Jeff Offutt

Covering Logic Expressions

 Logic expressions show up in many situations

 Covering logic expressions is required by the US Federal
Aviation Administration for safety critical software

 Logical expressions can come from many sources
 Decisions in programs
 FSMs and statecharts
 Requirements

 Tests are intended to choose some subset of the total number
of truth assignments to the expressions

Logic Coverage Criteria Subsumption

Clause
Coverage

CC

Predicate
Coverage

PC

Combinatorial
Clause Coverage

CoC

Restricted Active
Clause Coverage

RACC

Restricted Inactive
Clause Coverage

RICC

General Active
Clause Coverage

GACC

Correlated Active
Clause Coverage

CACC

General Inactive
Clause Coverage

GICC

3

Logic Predicates and Clauses

 A predicate is an expression that evaluates to a boolean
value

 Predicates can contain
 boolean variables
 non-boolean variables that contain >, <, ==, >=, <=, !=
 boolean function calls

 Internal structure is created by logical operators
 ¬ – the negation operator
 ∧ – the and operator
 ∨ – the or operator
 → – the implication operator
 ⊕ – the exclusive or operator
 ↔ – the equivalence operator

 A clause is a predicate with no logical operators

Examples
 (a < b) ∨ f (z) ∧ D ∧ (m >= n*o)
 Four clauses:

 (a < b) – relational expression
 f (z) – boolean-valued function
 D – boolean variable
 (m >= n*o) – relational expression

 Most predicates have few clauses
 Sources of predicates

 Decisions in programs
 Guards in finite state machines
 Decisions in UML activity graphs
 Requirements, both formal and informal
 SQL queries

Testing and Covering Predicates

 We use predicates in testing as follows :
 Developing a model of the software as one or more predicates
 Requiring tests to satisfy some combination of clauses

 Abbreviations:
 P is the set of predicates
 p is a single predicate in P
 C is the set of clauses in P
 Cp is the set of clauses in predicate p
 c is a single clause in C

Predicate and Clause Coverage
 The first (and simplest) two criteria require that each predicate

and each clause be evaluated to both true and false

Predicate Coverage (PC) : For each p in P, TR contains
two requirements: p evaluates to true, and p evaluates
to false.

Clause Coverage (CC) : For each c in C, TR contains
two requirements: c evaluates to true, and c evaluates
to false.

• When predicates come from conditions on edges, this is
equivalent to edge coverage

• PC does not evaluate all the clauses, so …

a.k.a. “condition coverage” in literature

a.k.a. “decision coverage” in literature

Predicate Coverage Example
((a < b) ∨ D) ∧ (m >= n*o)

predicate coverage
Predicate = true

a = 5, b = 10, D = true, m = 1, n = 1, o = 1
= (5 < 10) ∨ true ∧ (1 >= 1*1)
= true ∨ true ∧ TRUE
= true

Predicate = false
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
= (10 < 5) ∨ false ∧ (1 >= 1*1)
= false ∨ false ∧ TRUE
= false

Clause Coverage Example
((a < b) ∨ D) ∧ (m >= n*o)

Clause coverage

Two tests

(a < b) = true

a = 5, b = 10

(a < b) = false

a = 10, b = 5

D = true

D = true

D = false

D = false

m >= n*o = true

m = 1, n = 1, o = 1

m >= n*o = false

m = 1, n = 2, o = 2

1) a = 5, b = 10, D = true, m = 1, n = 1, o = 1

2) a = 10, b = 5, D = false, m = 1, n = 2, o = 2

Problems with PC and CC

 PC does not fully exercise all the clauses, espe
cially in the presence of short circuit evaluation

 CC does not always ensure PC
 That is, we can satisfy CC without causing the predi

cate to be both true and false
Ex. x > 3 → x > 1

 Two test cases { x=4, x=0} satisfy CC but not PC

 Condition/decision coverage is a hybrid metric
composed by CC union PC

Modified condition/decision
coverage (MC/DC)

 Standard requirement for safety critical systems such as
avionics (e.g., DO 178A/B/C)

 Modified condition/decision coverage (MC/DC) requires
 Satisfying CC and DC, and
 every condition in a decision should be shown to independently

affect that decision's outcome
 Example: C = A || B

 Which test cases are necessary to satisfy
 Condition coverage
 Decision coverage
 MC/DC coverage

A B C

TC1 T T T

TC2 T F T

TC3 F T T

TC4 F F F

Minimum Testing to Achieve MC/DC
[Chilenski and Miller’94]

 For C = A && B,
 All conditions (i.e., A and B) should be true so that

decision (i.e., C) becomes true
 1 test case required

 Each and every input should be exclusively false so
that decision becomes false.
 2 (or n for n-ary and) test cases required

 For C= A || B
 All conditions (i.e., A and B) should be false so that

decision (i.e., C) becomes false
 1 test case required

 Each and every input should be exclusively true so
that decision becomes true.
 2 (or n for n-ary or) test cases required

A B C

TC1 T T T

TC2 T F F

TC3 F T F

TC4 F F F

13

Combinatorial Coverage
 CoC requires every possible combination
 Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC) : For each p in P, TR has
test requirements for the clauses in Cp to evaluate to
each possible combination of truth values.

a < b D m >= n*o ((a < b) ∨ D) ∧ (m >= n*o)
1 T T T T
2 T T F F
3 T F T T
4 T F F F
5 F T T T
6 F T F F
7 F F T F
8 F F F F

Combinatorial Coverage
 This is simple, neat, clean, and comprehensive …
• But quite expensive!
• 2N tests, where N is the number of clauses

– Impractical for predicates with more than 3 or 4 clauses
• The literature has lots of suggestions – some confusing
• The general idea is simple:

Test each clause independently from the other clauses

• Getting the details right is hard
• What exactly does “independently” mean ?
• The book presents this idea as “making clauses active”

…

Active Clauses
 Clause coverage has a weakness

 The values do not always make a difference to a whole predicate
 To really test the results of a clause, the clause should be the

determining factor in the value of the predicate

Determination :

A clause ci in predicate p, called the major clause,
determines p if and only if the values of the
remaining minor clauses cj are such that changing
ci changes the value of p

• This is considered to make the clause ci active

Determining Predicates

 Goal : Find tests for each clause when the clause determines
the value of the predicate

 This is formalized in several criteria that have subtle, but very
important, differences

P = A ∨ B

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

P = A ∧ B

if B = false, p is always false.

so if B = true, A determines p.

if A = true, B determines p.

p = a ∨ b

1) a = true, b = false

2) a = false, b = false

3) a = false, b = true

4) a = false, b = false

Active Clause Coverage

 This is a form of MCDC, which is required by the Federal Avionics Admini
stration (FAA) for safety critical software

 Ambiguity : Do the minor clauses have to have the same values when the
major clause is true and false?

Active Clause Coverage (ACC) : For each p in P and each major
clause ci in Cp, choose minor clauses cj, j != i, so that ci determines
p. TR has two requirements for each ci : ci evaluates to true and ci
evaluates to false.

Duplicate

a is major
clause

b is major
clause

Resolving the Ambiguity

 This question caused confusion among testers for years
 Considering this carefully leads to three separate criteria :

 Minor clauses do not need to be the same (GACC)
 Minor clauses do need to be the same (RACC)
 Minor clauses force the predicate to become both true and false (CACC)

p = a ∨ (b ∧ c)

Major clause : a

a = true, b = false, c = true

a = false, b = false, c = falsec = false

Is this allowed ?

General Active Clause Coverage

 It is possible to satisfy GACC without satisfying predicate
coverage
 Ex. p = a ↔ b,

 {TT, FF} satisfies GACC, but not PC
 We want to cause predicates to be both true and false !

General Active Clause Coverage (GACC) : For each p in P and
each major clause ci in Cp, choose minor clauses cj, j != i, so that
ci determines p. TR has two requirements for each ci : ci evaluates
to true and ci evaluates to false.

The values chosen for the minor clauses cj do not need to be the
same when ci is true as when ci is false, that is, cj(ci = true) = cj(ci =
false) for all cj OR cj(ci = true) != cj(ci = false) for all cj.

Restricted Active Clause Coverage

 This has been a common interpretation by aviation developers
 RACC often leads to infeasible test requirements
 There is no logical reason for such a restriction

Restricted Active Clause Coverage (RACC) : For each p in P and
each major clause ci in Cp, choose minor clauses cj, j != i, so that
ci determines p. TR has two requirements for each ci: ci evaluates
to true and ci evaluates to false.

The values chosen for the minor clauses cj must be the same
when ci is true as when ci is false, that is, it is required that cj(ci =
true) = cj(ci = false) for all cj.

Correlated Active Clause Coverage

 A more recent interpretation
 Implicitly allows minor clauses to have different values
 Explicitly satisfies (subsumes) predicate coverage

Correlated Active Clause Coverage (CACC) : For each p in P and
each major clause ci in Cp, choose minor clauses cj, j != i, so that
ci determines p. TR has two requirements for each ci: ci evaluates
to true and ci evaluates to false.

The values chosen for the minor clauses cj must cause p to be
true for one value of the major clause ci and false for the other,
that is, it is required that p(ci = true) != p(ci = false).

CACC and RACC
a b c a ∧ (b ∨ c)

1 T T T T
2 T T F T
3 T F T T
5 F T T F
6 F T F F
7 F F T F

a b c a ∧ (b ∨ c)
1 T T T T
5 F T T F
2 T T F T
6 F T F F
3 T F T T
7 F F T F

CACC can be satisfied by
choosing any of rows 1, 2, 3
AND any of rows 5, 6, 7 – a total
of nine pairs

RACC can only be satisfied by
one of the three pairs above

T
F
T
F
T
F

a
T
T
T
F
F
F

a

major
clause

major
clause

22

Inactive Clause Coverage
 The active clause coverage criteria ensure that “major”

clauses do affect the predicates
 Inactive clause coverage takes the opposite approach – major

clauses do not affect the predicates

Inactive Clause Coverage (ICC) : For each p in P and each major
clause ci in Cp, choose minor clauses cj, j != i, so that ci does not
determine p. TR has four requirements for each ci:

(1) ci evaluates to true with p true

(2) ci evaluates to false with p true

(3) ci evaluates to true with p false, and

(4) ci evaluates to false with p false.

General and Restricted ICC
 Unlike ACC, the notion of correlation is not relevant

 ci does not determine p, so cannot correlate with p
 Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC) : For each p in P and each major
clause ci in Cp, choose minor clauses cj, j != i, so that ci does not
determine p. The values chosen for the minor clauses cj do not need to
be the same when ci is true as when ci is false, that is, cj(ci = true) = cj(ci =
false) for all cj OR cj(ci = true) != cj(ci = false) for all cj.

Restricted Inactive Clause Coverage (RICC) : For each p in P and each
major clause ci in Cp, choose minor clauses cj, j != i, so that ci does not
determine p. The values chosen for the minor clauses cj must be the
same when ci is true as when ci is false, that is, it is required that cj(ci =
true) = cj(ci = false) for all cj.

Logic Coverage Criteria Subsumption

Clause
Coverage

CC

Predicate
Coverage

PC

Combinatorial
Clause Coverage

CoC

Restricted Active
Clause Coverage

RACC

Restricted Inactive
Clause Coverage

RICC

General Active
Clause Coverage

GACC

Correlated Active
Clause Coverage

CACC

General Inactive
Clause Coverage

GICC

Making Clauses Determine a Predicate

 Finding values for minor clauses cj is easy for simple predicates
 But how to find values for more complicated predicates ?
 Definitional approach:

 pc=true is predicate p with every occurrence of c replaced by true
 pc=false is predicate p with every occurrence of c replaced by false

 To find values for the minor clauses, connect pc=true and pc=false
with exclusive OR

pc = pc=true ⊕ pc=false
 After solving, pc describes exactly the values needed for c to deter

mine p

Examples
p = a ∨ b

pa = pa=true ⊕ pa=false
= (true ∨ b) XOR (false ∨ b)
= true XOR b
= ¬ b

p = a ∧ b
pa = pa=true ⊕ pa=false

= (true ∧ b) ⊕ (false ∧ b)
= b ⊕ false
= b

p = a ∨ (b ∧ c)
pa = pa=true ⊕ pa=false

= (true ∨ (b ∧ c)) ⊕ (false ∨ (b ∧ c))
= true ⊕ (b ∧ c)
= ¬ (b ∧ c)
= ¬ b ∨ ¬ c

• “NOT b ∨ NOT c” means either b or c can be false

• RACC requires the same choice for both values of a, CACC
does not

A More Subtle Example
p = (a ∧ b) ∨ (a ∧ ¬ b)

pa = pa=true ⊕ pa=false
= ((true ∧ b) ∨ (true ∧ ¬ b)) ⊕ ((false ∧ b) ∨ (false ∧ ¬ b))
= (b ∨ ¬ b) ⊕ false
= true ⊕ false
= true

• a always determines the value of this predicate

• b never determines the value – b is irrelevant !

p = (a ∧ b) ∨ (a ∧ ¬ b)
pb = pb=true ⊕ pb=false

= ((a ∧ true) ∨ (a ∧ ¬ true)) ⊕ ((a ∧ false) ∨ (a ∧ ¬ false))
= (a ∨ false) ⊕ (false ∨ a)
= a ⊕ a
= false

Infeasible Test Requirements

 Consider the predicate:
(a > b ∧ b > c) ∨ c > a

 (a > b) = true, (b > c) = true, (c > a) = true is infeasible

 As with graph-based criteria, infeasible test requirements
have to be recognized and ignored

 Recognizing infeasible test requirements is hard, and in
general, undecidable

Example
p = a ∧ (¬b ∨ c) All pairs of rows satisfying GACC

 a: {1,3,4} x {5,7,8}, b: {(2,4)}, c:{(1,2)}
 All pairs of rows satisfying CACC

 Same as GACC
 All pairs of rows satisfying RACC

 a: {(1,5),(3,7),(4,8)}
 Same as CACC pairs for b, c

 GICC
 a: {(2,6)} for p=F, no feasible pair for p=T
 b: {5,6}x{7,8} for p=F, {(1,3) for p=T
 c: {5,7}x{6,8} for p=F, {(3,4)} for p=T

 RICC
 a: same as GICC
 b: {(5,7),(6,8)} for p=F, {(1,3)} for p=T
 c: {(5,6),(7,8)} for p=F, {(3,4)} for p=T

 Conditions under which each
of the clauses determines p
 pa: (¬b ∨ c)
 pb: a ∧¬c
 pc: a ∧ b

a b c p pa pb pc

1 T T T T T F T

2 T T F F F T T

3 T F T T T F F

4 T F F T T T F

5 F T T F T F F

6 F T F F F F F

7 F F T F T F F

8 F F F F T F F

Logic Coverage Summary
 Predicates are often very simple—in practice, most have less t

han 3 clauses
 In fact, most predicates only have one clause !
 With only clause, PC is enough
 With 2 or 3 clauses, CoC is practical
 Advantages of ACC and ICC criteria significant for large predicates

 CoC is impractical for predicates with many clauses

 Control software often has many complicated predicates, with
lots of clauses
 Question … why don’t complexity metrics count the number of clauses

in predicates?

	Introduction to Software Testing�Chapter 3.2 Logic Coverage
	Covering Logic Expressions
	Logic Coverage Criteria Subsumption
	Logic Predicates and Clauses
	Examples
	Testing and Covering Predicates
	Predicate and Clause Coverage
	Predicate Coverage Example
	Clause Coverage Example
	Problems with PC and CC
	Modified condition/decision coverage (MC/DC)
	Minimum Testing to Achieve MC/DC [Chilenski and Miller’94]
	Combinatorial Coverage
	Combinatorial Coverage
	Active Clauses
	Determining Predicates
	Active Clause Coverage
	Resolving the Ambiguity
	General Active Clause Coverage
	Restricted Active Clause Coverage
	Correlated Active Clause Coverage
	CACC and RACC
	Inactive Clause Coverage
	General and Restricted ICC
	Logic Coverage Criteria Subsumption
	Making Clauses Determine a Predicate
	Examples
	A More Subtle Example
	Infeasible Test Requirements
	Example
	Logic Coverage Summary

