Introduction to Software Testing Chapter 3.2 Logic Coverage

Paul Ammann & Jeff Offutt

Covering Logic Expressions

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Coverage Criteria Subsumption

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, !=</p>
 - boolean function calls
- Internal structure is created by logical operators
 - the negation operator
 - A the and operator
 - v the or operator

- \rightarrow the *implication* operator
- ↔ the equivalence operator
- A *clause* is a predicate with no logical operators

Examples

- $(a < b) \lor f(z) \land D \land (m \ge n^*o)$
- Four clauses:
 - (a < b) relational expression</p>
 - f (z) boolean-valued function
 - D boolean variable
 - (m >= n*o) relational expression
- Most predicates have few clauses
- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal
 - SQL queries

Testing and Covering Predicates

- We use predicates in testing as follows :
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses

Abbreviations:

- P is the set of predicates
- p is a single predicate in P
- C is the set of clauses in P
- C_p is the set of clauses in predicate p
- c is a single clause in C

Predicate and Clause Coverage

The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC) : For each *p* in *P*, *TR* contains two requirements: *p* evaluates to true, and *p* evaluates to false.

a.k.a. "decision coverage" in literature

- When predicates come from conditions on edges, this is equivalent to edge coverage
- PC does not evaluate all the clauses, so …

Clause Coverage (CC) : For each *c* in *C*, *TR* contains two requirements: *c* evaluates to true, and *c* evaluates to false.

a.k.a. "condition coverage" in literature

Predicate Coverage Example ((a < b) ∨ D) ∧ (m >= n*o) predicate coverage

Predicate = true

a = 5, b = 10, D = true, m = 1, n = 1, o = 1 = (5 < 10) ∨ true ∧ (1 >= 1*1) = true ∨ true ∧ TRUE = true

Predicate = false

a = 10, b = 5, D = false, m = 1, n = 1, o = 1 = (10 < 5) \to false \landskip (1 >= 1*1) = false \to false \landskip TRUE = false

Clause Coverage Example ((a < b) \lor D) \land (m >= n*o) Clause coverage

Problems with PC and CC

- PC does not fully exercise all the clauses, espe cially in the presence of short circuit evaluation
- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false

Ex. $x > 3 \rightarrow x > 1$

Two test cases { x=4, x=0} satisfy CC but not PC

Condition/decision coverage is a hybrid metric composed by CC union PC

Modified condition/decision coverage (MC/DC)

- Standard requirement for safety critical systems such as avionics (e.g., DO 178A/B/C)
- Modified condition/decision coverage (MC/DC) requires
 - Satisfying CC and DC, and
 - every condition in a decision should be shown to <u>independently</u> affect that decision's outcome
- Example: C = A || B
 - Which test cases are necessary to satisfy
 - Condition coverage
 - Decision coverage
 - MC/DC coverage

Minimum Testing to Achieve MC/DC [Chilenski and Miller'94]

For C = A && B,

- All conditions (i.e., A and B) should be true so that decision (i.e., C) becomes true
 - 1 test case required
- Each and every input should be exclusively false so that decision becomes false.
 - 2 (or n for n-ary and) test cases required
- For C= A || B
 - All conditions (i.e., A and B) should be false so that decision (i.e., C) becomes false
 - 1 test case required
 - Each and every input should be exclusively true so that decision becomes true.
 - 2 (or n for n-ary or) test cases required

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC) : For each p in P, TR has test requirements for the clauses in C_p to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	$((a < b) \lor D) \land (m \ge n*o)$
1	Τ	Τ	Т	Т
2	Τ	Τ	F	F
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Τ	Т	Т
6	F	Τ	F	F
7	F	F	Т	F
8	F	F	F	\mathbf{F}

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the details right is hard
- What exactly does "independently" mean ?
- The book presents this idea as "making clauses <u>active</u>"

. . .

Active Clauses

- Clause coverage has a weakness
 - The values do not always make a difference to a whole predicate
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

A clause C_i in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses C_j are such that changing C_i changes the value of p

This is considered to make the clause c_i active

Determining Predicates

$\underline{\mathsf{P}} = \mathsf{A} \lor \underline{\mathsf{B}}$

if B = true, p is always true. so if B = false, A determines p. if A = false, B determines p.

$\mathbf{P} = \mathbf{A} \wedge \mathbf{B}$

if B = false, p is always false. so if B = true, A determines p. if A = true, B determines p.

- Goal : Find tests for each clause when the clause determines the value of the predicate
- This is formalized in several criteria that have subtle, but very important, differences

Active Clause Coverage

Active Clause Coverage (ACC) : For each p in P and each major clause c_i in C_p , choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

- This is a form of MCDC, which is required by the Federal Avionics Admini stration (FAA) for safety critical software
- <u>Ambiguity</u>: Do the minor clauses have to have the same values when the major clause is true and false?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria :
 - Minor clauses <u>do not</u> need to be the same (GACC)
 - Minor clauses <u>do</u> need to be the same (RACC)
 - Minor clauses force the predicate to become both true and false (CACC)

General Active Clause Coverage

General Active Clause Coverage (GACC) : For each *p* in *P* and each major clause c_i in *Cp*, choose minor clauses c_j , *j* != *i*, so that c_i determines *p*. TR has two requirements for each $c_i : c_i$ evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j do <u>not</u> need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_i OR $c_i(c_i = true) != c_i(c_i = false)$ for all c_i .

- It is possible to satisfy GACC without satisfying predicate coverage
 - Ex. $p = a \leftrightarrow b$,

TT, FF} satisfies GACC, but not PC

We want to cause predicates to be both true and false !

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC) : For each *p* in *P* and each major clause c_i in *Cp*, choose minor clauses c_j , *j* != *i*, so that c_i determines *p*. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_j(c_i = false)$ for all c_j .

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC) : For each *p* in *P* and each major clause *ci* in *Cp*, choose minor clauses c_j , *j* != *i*, so that c_i determines *p*. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must <u>cause p to be</u> true for one value of the major clause c_j and false for the other, that is, it is required that $p(c_i = true) != p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage

CACC and RACC

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

RACC can only be satisfied by one of the three pairs above

Inactive Clause Coverage

- The active clause coverage criteria ensure that "major" clauses <u>do affect</u> the predicates
- Inactive clause coverage takes the opposite approach major clauses do not affect the predicates

Inactive Clause Coverage (ICC) : For each *p* in *P* and each major clause c_i in *Cp*, choose minor clauses c_j , j != i, so that c_j does not determine *p*. TR has four requirements for each c_j :

- (1) c_i evaluates to true with p true
- (2) c_i evaluates to false with p true
- (3) c_i evaluates to true with p false, and

(4) c_i evaluates to false with p false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - c_i does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC) : For each *p* in *P* and each major clause c_i in *Cp*, choose minor clauses c_j , $j \neq i$, so that $c_i \text{ does not}$ determine *p*. The values chosen for the minor clauses $c_j \text{ do not}$ need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all $c_i \text{ OR } c_i(c_i = true) \neq c_i(c_i = false)$ for all c_i .

Restricted Inactive Clause Coverage (RICC): For each *p* in *P* and each major clause c_i in *Cp*, choose minor clauses c_j , $j \neq i$, so that c_i does not determine *p*. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_j(c_i = talse)$ for all c_j .

Logic Coverage Criteria Subsumption

KAIST

Making Clauses Determine a Predicate

- Finding values for minor clauses C_i is easy for simple predicates
- But how to find values for more complicated predicates ?
- Definitional approach:
 - $p_{c=true}$ is predicate *p* with every occurrence of *c* replaced by *true*
 - *p_{c=false}* is predicate *p* with every occurrence of *c* replaced by *false*
- To find values for the minor clauses, connect p_{c=true} and p_{c=false} with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

 After solving, p_c describes exactly the values needed for c to deter mine p

Examples

<u>p = a ∨ b</u>

 $p_a = p_{a=true} \oplus p_{a=false}$ = (true \lor b) XOR (false \lor b) = true XOR b = \neg b

<u>p = a ∧ b</u>

 $p_a = p_{a=true} \oplus p_{a=false}$ = (true \land b) \oplus (false \land b) = b \oplus false

= b

<u>p = a ∨ (b ∧ c)</u>

 $p_a = p_{a=true} \oplus p_{a=false}$ = (true \neq (b \lapha c)) \overline (false \neq (b \lapha c)) = true \overline (b \lapha c) = \neg (b \lapha c) = \neg b \neg \neg c

• "NOT $b \lor NOT c$ " means either b or c can be false

• RACC requires the same choice for both values of *a*, CACC

A More Subtle Example

<u>p = (a ∧ b) ∨ (a ∧ ¬ b)</u>

 $p_a = p_{a=true} \oplus p_{a=false}$

- = ((true \land b) \lor (true $\land \neg$ b)) \oplus ((false \land b) \lor (false $\land \neg$ b))
- = (b $\lor \neg$ b) \oplus false

= true

<u>p = (a ∧ b) ∨ (a ∧ ¬ b)</u>

```
p_b = p_{b=true} \oplus p_{b=false}
= ((a \land true) \vee (a \land \neg true)) \oplus ((a \land false) \vee (a \land \neg false))
= (a \vee false) \oplus (false \vee a)
= a \oplus a
= false
```

- a always determines the value of this predicate
- *b* never determines the value *b* is irrelevant !

Infeasible Test Requirements

Consider the predicate:

 $(a > b \land b > c) \lor c > a$

• (a > b) = true, (b > c) = true, (c > a) = true is infeasible

- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable

Example

p = a ∧ (¬b ∨ c)

- Conditions under which each c: of the clauses determines p RICC
 - p_a: (¬b ∨ c)
 - p_b: a ∧¬c
 - ___ p_c: a ∧ b

- All pairs of rows satisfying GACC
 - a: {1,3,4} x {5,7,8}, b: {(2,4)}, c:{(1,2)}
 - All pairs of rows satisfying CACC
 - Same as GACC
 - All pairs of rows satisfying RACC
 - a: {(1,5),(3,7),(4,8)}
 - Same as CACC pairs for b, c
 - GICC
 - a: {(2,6)} for p=F, no feasible pair for p=T
 - b: {5,6}x{7,8} for p=F, {(1,3) for p=T
 - c: {5,7}x{6,8} for p=F, {(3,4)} for p=T
 - a: same as GICC
 - b: {(5,7),(6,8)} for p=F, {(1,3)} for p=T
 - c: {(5,6),(7,8)} for p=F, {(3,4)} for p=T

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less t han 3 clauses
 - In fact, most predicates only have one clause !
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 CoC is impractical for predicates with many clauses
- Control software often has many complicated predicates, with lots of clauses
 - Question ... why don't complexity metrics count the number of clauses in predicates?

