
/ 33

Engineering LLVM IR and
Measuring Condition Coverage of

C Programs

Prof. Moonzoo Kim
CS Dept., KAIST

CS453 Automated Software Testing

2014-10-07

/ 33

Overview

• Build an LLVM IR level code instrumentor (transformer)
that automatically inserts the conditional coverage
measurement feature to a test target program

– LLVM IR: simple and informative intermediate
representation of C/C++ programs

– Condition coverage: check if every conditional expression
was ever evaluated as both false and true in a test

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 2

/ 33

LLVM Compiler Infrastructure
• A collection of modular and reusable compilers and analyzers
• Being widely used in academy, open source, and commercials

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 3

…

…

…

LLVM IR LLVM IR’

C++

Object-C

C C Frontend

C++ Frontend

Object-C
Frontend

… …

LLVM Passes

/ 33

LLVM is Professional Compiler
• Clang, the LLVM C/C++ front-end supports the full-features of

C/C++ and compatible with GCC
– The dominating compiler in Apple Inc. (used for Swift by Apple)

• The executable compiled by Clang/LLVM is as fast as the
executable by GCC

• LLVM provides 108+ Passes http://llvm.org/docs/Passes.html

– Analyzers (41): alias analysis, call graph constructions, dependence
analysis, etc.

– Transformers (57): dead code elimination, function inlining, constant
propagation, loop unrolling, etc.

– Utilities (10): CFG viewer, basic block extractor, etc.

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 4

http://llvm.org/docs/Passes.html

/ 33

LLVM IR As Analysis Target

• The LLVM IR of a program is a better target for analysis and engineering
than the program source code.
– Language-independent

• Able to represent C/C++/Object-C programs
– Simple

• register machine
• static single assignment (SSA)
• composed as basic blocks

– Informative
• typed language
• control-flow

• LLVM IR is also called as LLVM language, assembly, bitcode, bytecode,
code representation

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 5

/ 33

LLVM IR At a Glance

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 6

C program language LLVM IR

• Scope: file, function module, function

• Data-flow:
a sequence of reads/writes on
variables

1. load the values of memory addresses
(variables) to registers;

2. compute the values in registers;
3. store the values of registers to

memory addresses
* each register must be assigned exactly

once (SSA)
• Control-flow in a function:

if, for, while, do while, switch-case,…
A set of basic blocks each of which is
ended with a conditional jump (or return)

• A statement with multiple
expressions

A sequence of instructions each of
which is in a form of “x = y op z”.

• Type: bool, char, int, struct{int, char} i1, i8, i32, {i32, i8}

/ 33

Example

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 7

1

2

3

4

5

6

7

8

9

10

11

$ clang –S –emit-llvm simple.c

#include <stdio.h>

int x, y ;

int main() {

int t ;

scanf(“%d %d”,&x,&y);

t = x – y ;

if (t > 0)

printf(“x > y”) ;

return 0 ;

}

…
6 @x = common global i32 0, align 4
7 @y = common global i32 0, align 4

11 define i32 @main() #0 {
12 entry:
…
14 %t = alloca i32, align 4
…
16 %call = call i32 (i8*, ...)*

@__isoc99_scanf(…i32* @x,i32* @y)

17 %0 = load i32* @x, align 4
18 %1 = load i32* @y, align 4
19 %sub = sub nsw i32 %0 %1
20 store i32 %sub, i32* %t, align 4

21 %2 = load i32* %t, align 4
22 %cmp = icmp sgt i32 %2, 0
23 br i1 %cmp, label %if.then,

label %if.end

24 if.then:
25 %call1 = call i32 … @printf(…
26 br label %if.end

27 if.end:
28 ret i32 0

simple.c simple.ll (simplified)

2

4

5

6

7

8

9

10

/ 33

Contents
• LLVM IR Instruction

– architecture, static single assignment

• Data representation
– types, constants, registers, variables
– load/store instructions, cast instructions
– computational instructions

• Control representation
– control flow (basic block)
– control instructions

• How to instrument LLVM IR
* LLVM Language Reference Manual http://llvm.org/docs/LangRef.html
* Mapping High-Level Constructs to LLVM IR

http://llvm.lyngvig.org/Articles/Mapping-High-Level-Constructs-to-LLVM-IR

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 8

/ 33

LLVM IR Architecture
• RISC-like instruction set

– Only 31 op-codes (types of instructions) exist
– Most instructions (e.g. computational instructions) are in three-address

form: one or two operands, and one result

• Load/store architecture
– Memory can be accessed via load/store instruction
– Computational instructions operate on registers

• Infinite and typed virtual registers
– It is possible to declare a new register any point

(the backend maps virtual registers to physical ones).
– A register is declared with a primitive type (boolean, int, float, pointer)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 9

/ 33

Static Single Assignment (1/2)
• In SSA, each variable is assigned exactly once, and every variable

is defined before its uses.
• Conversion

– For each definition, create a new version of the target variable (left-
hand side) and replace the target variable with the new variable.

– For each use, replace the original referred variable with the
versioned variable reaching the use point.

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 10

x = y + x ;
y = x + y ;
if (y > 0)
x = y ;

else
x = y + 1 ;

x1 = y0 + x0 ;
y1 = x1 + y0 ;
if (y1 > 0)
x2 = y1 ;

else
x3 = y1 + 1 ;

1
2
3
4
5
6

11
12
13
14
15
16

/ 33

Static Single Assignment (2/2)

• Use 𝜙𝜙 function if two versions of a variable are reaching one
use point at a joining basic block
– 𝜙𝜙(𝑥𝑥1, 𝑥𝑥2) returns a either 𝑥𝑥1 or 𝑥𝑥2 depending on which block was

executed

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 11

x = y + x ;
y = x + y ;
if (y > 0)
x = y ;

else
x = y + 1 ;

y = x – y ;

x1 = y0 + x0 ;
y1 = x1 + y0 ;
if (y1 > 0)
x2 = y1 ;

else
x3 = y1 + 1 ;

x4 = 𝜙𝜙(x2, x3);
y2 = x4 – y1 ;

1
2
3
4
5
6
7

11
12
13
14
15
16
17
18

/ 33

Data Representations

• Primitive types
• Constants
• Registers (virtual registers)
• Variables

– local variables, heap variables, global variables

• Load and store instructions
• Aggregated types

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 12

/ 33

Primitive Types

• Language independent primitive types with predefined sizes
– void: void
– bool: i1
– integers: i[N] where N is 1 to 223-1

e.g. i8, i16, i32, i1942652

– floating-point types:
half (16-bit floating point value)
float (32-bit floating point value)
double (64-bit floating point value)

• Pointer type is a form of <type>* (e.g. i32*, (i32*)*)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 13

/ 33

Constants

• Boolean (i1): true and false

• Integer: standard integers including negative numbers

• Floating point: decimal notation, exponential notation,
or hexadecimal notation (IEEE754 Std.)

• Pointer: null is treated as a special value

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 14

/ 33

Registers

• Identifier syntax
– Named registers: [%][a-zA-Z$._][a-zA-Z$._0-9]*
– Unnamed registers: [%][0-9][0-9]*

• A register has a function-level scope.
– Two registers in different functions may have the same

identifier

• A register is assigned for a particular type and a value
at its first (and the only) definition

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 15

/ 33

Variables
• In LLVM, all addressable objects (“lvalues”) are explicitly allocated.

• Global variables
– Each variable has a global scope symbol that points to the

memory address of the object
– Variable identifier: [@][a-zA-Z$._][a-zA-Z$._0-9]*

• Local variables
– The alloca instruction allocates memory in the stack frame.
– Deallocated automatically if the function returns.

• Heap variables
– The malloc function call allocates memory on the heap.
– The free function call frees the memory allocated by
malloc.

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 16

/ 33

Load and Store Instructions

• Load
<result> = load <type>* <ptr>[, align <n>]

• result: the target register
• type: the type of the data (a pointer type)
• ptr: the register that has the address of the data
• n: the alignment of the memory address (optional)

• Store
store <type> <value>, <type>* <ptr>[, align <n>]

• type: the type of the value
• value: either a constant or a register that holds the value
• ptr: the register that has the address where the data should be stored
• n: the alignment of the memory address (optional)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 17

/ 33

Variable Example

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 18

1 #include <stdlib.h>
2
3 int g = 0 ;
4
5 int main() {
6 int t = 0;
7 int * p;
8 p=malloc(sizeof(int));
9 free(p);

10 }

1 @g = global i32 0, align 4
…
8 define i32 @main() #0 {
…
10 %t = alloca i32, align 4
11 store i32 0, i32* %t, align 4

12 %p = alloca i32*, align 8

13 %call = call noalias i8*
@malloc(i64 4) #2

14 %0 = bitcast i8* %call to i32*
15 store i32* %0, i32** %p,

align 8
16 %1 = load i32** %p, align 8
…

/ 33

Aggregate Types and Function Type

• Array: [<# of elements> x <type>]
– Single dimensional array ex: [40 x i32], [4 x i8]

– Multi dimensional array ex: [3 x [4 x i8]], [12 x [10 x float]]

• Structure: type {<a list of types>}
– E.g. type{ i32, i32, i32 }, type{ i8, i32 }

• Function: <return type> (a list of parameter types)
– E.g. i32 (i32), float (i16, i32*)*

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 19

/ 33

Getelementptr Instruction

• A memory in an aggregate type variable can be accessed by
load/store instruction and getelementptr instruction
that obtains the pointer to the element.

• Syntax:
<res> = getelementptr <pty>* <ptrval>{,<t> <idx>}*

• res: the target register
• pty: the register that defines the aggregate type
• ptrval: the register that points to the data variable
• t: the type of index
• idx: the index value

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 20

/ 33

Aggregate Type Example

1 struct pair {
2 int first;
3 int second;
4 };

5 int main() {
6 int arr[10];
7 struct pair a;

8 a.first = arr[1];
…

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 21

%struct.pair = type{ i32, i32 }

define i32 @main() {
entry:
%arr = alloca [10 x i32]
%a = alloca %struct.pair

%arrayidx = getelementptr
[10 x 32]* %arr,i32 0,i64 1

%0 = load i32* %arrayidx

%first = getelementptr
%struct.pair* %a,i32 0,i32 0

%store i32 %0, i32* %first

11

12
13
14
15

16

17

18

19

/ 33

Integer Conversion (1/2)

• Truncate
– Syntax: <res> = trunc <iN1> <value> to <iN2>

where iN1 and iN2 are of integer type, and N1 > N2
– Examples

• %X = trunc i32 257 to i8 ;%X becomes i8:1

• %Y = trunc i32 123 to i1 ;%Y becomes i1:true

• %Z = trunc i32 122 to i1 ;%Z becomes i1:false

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 22

/ 33

Integer Conversion (2/2)
• Zero extension

– <res> = zext <iN1> <value> to <iN2> where
iN1 and iN2 are of integer type, and N1 < N2

– Fill the remaining bits with zero
– Examples

• %X = zext i32 257 to i64 ;%X becomes i64:257

• %Y = zext i1 true to i32 ;%Y becomes i32:1

• Sign extension
– <res> = sext <iN1> <value> to <iN2> where
iN1 and iN2 are of integer type, and N1 < N2

– Fill the remaining bits with the sign bit (the highest order bit) of value
– Examples

• %X = sext i8 -1 to i16 ;%X becomes i16:65535

• %Y = sext i1 true to i32 ;%Y becomes i32:-1

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 23

/ 33

Other Conversions

• Float-to-float
– fptrunc .. to, fpext .. to

• Float-to-integer (vice versa)
– fptoui .. to, tptosi .. to, uitofp .. to,
sitofp .. to

• Pointer-to-integer
– ptrtoint .. to, inttoptr .. to

• Bitcast
– <res> = bitcast <t1> <value> to <t2>

where t1 and t2 should be different types and have the same
size

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 24

/ 33

Computational Instructions

• Binary operations:
– Add: add, sub , fsub
– Multiplication: mul , fmul
– Division: udiv , sdiv , fdiv
– Remainder: urem , srem , frem

• Bitwise binary operations
– shift operations: shl , lshl , ashr
– logical operations: and , or , xor

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 25

/ 33

Add Instruction

• <res> = add [nuw][nsw] <iN> <op1>, <op2>

– nuw (no unsigned wrap): if unsigned overflow occurs,
the result value becomes a poison value (undefined)

• E.g: add nuw i8 255, i8 1

– nsw (no signed wrap): if signed overflow occurs,
the result value becomes a poison value

• E.g. add nsw i8 127, i8 1

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 26

/ 33

Control Representation

• The LLVM front-end constructs the control flow graph (CFG) of
every function explicitly in LLVM IR
– A function has a set of basic blocks each of which is a sequence of

instructions
– A function has exactly one entry basic block
– Every basic block is ended with exactly one terminator instruction

which explicitly specifies its successor basic blocks if there exist.
• Terminator instructions: branches (conditional, unconditional), return,

unwind, invoke

• As the instructions are represented as a form of CFG, it is very
convenient to analyze, transform the target program in LLVM IR

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 27

/ 33

Label, Return, and Unconditional Branch

• A label is located at the start of a basic block
– Each basic block is addressed as the start label
– A label x is referenced as register %x whose type is label
– The label of the entry block of a function is “entry”

• Return ret <type> <value> | ret void

• Unconditional branch br label <dest>

– At the end of a basic block, this instruction makes a transition to
the basic block starting with label <dest>

– E.g: br label %entry

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 28

/ 33

Conditional Branch
• <res> = icmp <cmp> <ty> <op1>, <op2>

– Returns either true or false (i1) based on comparison of two variables
(op1 and op2) of the same type (ty)

– cmp: comparison option
eq (equal), ne (not equal), ugt (unsigned greater than),
uge (unsigned greater or equal), ult (unsigned less than),
ule (unsigned less or equal), sgt (signed greater than),
sge (signed greater or equal), slt (signed less than), sle (signed less or equal)

• br i1 <cond>, label <thenbb>, label <elsebb>
– Causes the current execution to transfer to the basic block <thenbb>

if the value of <cond> is true; to the basic block <elsebb> otherwise.

• Example:

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 29

1 if (x > y)
2 return 1 ;
3 return 0 ;

11 %0 = load i32* %x
12 %1 = load i32* %y
13 %cmp = icmp sgt i32 %0, %1
14 br i1 %cmp, label %if.then, label %if.end

15 if.then:
…

/ 33

Switch
• switch <iN> <value>, label <defaultdest>

[<iN> <val>, label <dest> …]

– Transfer control flow to one of many possible destinations
– If the value is found (val), control flow is transferred to the

corresponding destination (dest); or to the default destination
(defaultdest)

– Examples:

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 30

switch(x) {
case 1:

break ;
case 2:

break ;
default:

break ;
}

%0 = load i32* %x
switch i32 %0, label %sw.default [

i32 1, label %sw.bb
i32 2, label %sw.bb1]

sw.bb:
br label %sw.epilog

sw.bb1:
br label %sw.epilog

sw.default:
br label %sw.epilog

sw.epilog:
…

1
2
3
4
5
6
7
8

11
12
13
14

15
16

17
18

19
20

21

/ 33

PHI (𝛷𝛷) instruction
• <res> = phi <t> [<val_0>, <label_0>],

[<val_1>, <label_1>], …
– Return a value val_i of type t such that the basic block executed

right before the current one is of label_i

• Example

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 31

1 y = (x > 0) ? x : 0 ;
11 %0 = load i32* %x
12 %c = icmp sgt i32 %0
13 br i1 %c, label %c.t, %c.f

14 c.t:
15 %1 = load i32* %x
16 br label %c.end

17 c.f:
18 br label %c.end

19 c.end:
20 %cond = phi i32 [%1, %c.t], [0, %c.f]
21 store i32 %cond, i32* %y

/ 33

Function Call
• <res> = call <t> [<fnty>*] <fnptrval>(<fn args>)

– t: the type of the call return value
– fnty: the signature of the pointer to the target function (optional)
– fnptrval: an LLVM value containing a pointer to a target function
– fn args: argument list whose types match the function signature

• Examples:

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 32

1 printf(“%d”, abs(x));
11 @.str = [3 x i8] c”%d\00”

12 %0 = load i32* %x
13 %call = call i32 @abs(i32 %0)

14 %call1 = call i32 (i8*, ...)*
@printf(i8*
getelementptr ([3 x i8]* @.str,
i32 0, i32 0),

i32 %call)

/ 33

Unaddressed Issues

• Many options/attributes of instructions

• Vector data type (SIMD style)

• Exception handling

• Object-oriented programming specific features

• Concurrency issues
– Memory model, synchronization, atomic instructions

* http://llvm.org/docs/LangRef.html

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 33

	Engineering LLVM IR and �Measuring Condition Coverage of �C Programs
	Overview
	LLVM Compiler Infrastructure
	LLVM is Professional Compiler
	LLVM IR As Analysis Target
	LLVM IR At a Glance
	Example
	Contents
	LLVM IR Architecture
	Static Single Assignment (1/2)
	Static Single Assignment (2/2)
	Data Representations
	Primitive Types
	Constants
	Registers
	Variables
	Load and Store Instructions
	Variable Example
	Aggregate Types and Function Type
	Getelementptr Instruction
	Aggregate Type Example
	Integer Conversion (1/2)
	Integer Conversion (2/2)
	Other Conversions
	Computational Instructions
	Add Instruction
	Control Representation
	Label, Return, and Unconditional Branch
	Conditional Branch
	Switch
	PHI (𝛷) instruction
	Function Call
	Unaddressed Issues

