2014-10-07

CS453 Automated Software Testing

Engineering LLVM IR and
Measuring Condition Coverage of
C Programs

Prof. Moonzoo Kim
CS Dept., KAIST

Overview

e Build an LLVM IR level code instrumentor (transformer)
that automatically inserts the conditional coverage
measurement feature to a test target program

— LLVM IR: simple and informative intermediate
representation of C/C++ programs

— Condition coverage: check if every conditional expression
was ever evaluated as both false and true in a test

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 2 /33

LLVM Compiler Infrastructure

-

e A collection of modular and reusable compilers and analyzers
 Being widely used in academy, open source, and commercials

C - C Frontend XB6 Backend —» XB6
_— / —
C++ -*| C++ Frontend S;Tmr:':; PowerPC Backend | —»= PowerPC
- _____________________o I - ________________
Object-C
. - ARM Backend - ARM
Object-C Frontend

LLVM IR —> LIS LiVvM IR

LLVM Passes

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 3 /33

LLVM is Professional Compiler

e Clang, the LLVM C/C++ front-end supports the full-features of
C/C++ and compatible with GCC

— The dominating compiler in Apple Inc. (used for Swift by Apple)

* The executable compiled by Clang/LLVM is as fast as the
executable by GCC

e LLVM provides 108* Passes http://llvm.org/docs/Passes.html

— Analyzers (41): alias analysis, call graph constructions, dependence
analysis, etc.

— Transformers (57): dead code elimination, function inlining, constant
propagation, loop unrolling, etc.

— Utilities (10): CFG viewer, basic block extractor, etc.

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 4 /33

http://llvm.org/docs/Passes.html

LLVM IR As Analysis Target

e The LLVM IR of a program is a better target for analysis and engineering
than the program source code.
— Language-independent
e Able to represent C/C++/Object-C programs
— Simple
e register machine
e static single assignment (SSA)
e composed as basic blocks
— Informative
e typed language
e control-flow

e LLVM IR is also called as LLVM language, assembly, bitcode, bytecode,
code representation

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 5 /33

LLVM IR At a Glance

C program language LLVM IR

Scope: file, function module, function

Type: bool, char, int, struct{int, char} i1, i8, 32, {i32, i8}

A statement with multiple A sequence of instructions each of
expressions which is in a form of “x =y op z”.
Data-flow: 1. load the values of memory addresses

(variables) to registers;

a sequence of reads/writes on _ _
variables 2. compute the values in registers;
3. store the values of registers to
memory addresses
* each register must be assigned exactly
once (SSA)
Control-flow in a function: A set of basic blocks each of which is

if, for, while, do while, switch-case,... ended with a conditional jump (or return)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 6 /33

simple.c

#include <stdio.h>

int x, y ;

int main() {

Example

simple.ll (simplified)

2 “6
-

@x
Qy

common global 132 0, align 4
132 0, align 4

common qglobal

11
412

define 132 @main() #0 {
entry:

5 14

%t = alloca 132, align 4

scanf(“%d %d”,&x,&y);
t=X-YVY ;

if (t > 0)

1
2
3
4
5 iInt t ;
6
7
8
9 printf(*x > y”’) ;

6 16

7 17
18
19
20

%call = call 132 (18*, ...)*
@ 1s0c99 scanf(.132* @x,132* Qy)

%0 = load 132* @x, align 4

%1 = load 132* @y, align 4

%sub = sub nsw 132 %0 %1

store 132 %sub, 132* %t, align 4

10 return O ;

11}

$ clang -S —-emit-1lvm simple.c

2014-10-07

21
& 52
23

%2 = load 132* %t, align 4

%cmp = 1cmp sgt 132 %2, O

br 11 %cmp, label %if.then,
label %if.end

24
9
25
26

1f_then:
calll =
br label

call 132
%if.end

.. @printf(..

10 27
28

if.end:
ret 132 0

Engineering LLVM IR and Measuring Condition Coverage of C Programs

7 /33

Contents

e LLVM IR Instruction
— architecture, static single assignment

e Data representation
— types, constants, registers, variables
— load/store instructions, cast instructions
— computational instructions

e Control representation
— control flow (basic block)
— control instructions

e How to instrument LLVM IR

* LLVM Language Reference Manual http://llvm.org/docs/LangRef.html
* Mapping High-Level Constructs to LLVM IR
http://llvm.lyngvig.org/Articles/Mapping-High-Level-Constructs-to-LLVM-IR

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 8 /33

LLVM IR Architecture

e RISC-like instruction set

— Only 31 op-codes (types of instructions) exist

— Most instructions (e.g. computational instructions) are in three-address
form: one or two operands, and one result

e Load/store architecture
— Memory can be accessed via load/store instruction
— Computational instructions operate on registers

* Infinite and typed virtual registers

— It is possible to declare a new register any point
(the backend maps virtual registers to physical ones).

— A register is declared with a primitive type (boolean, int, float, pointer)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 9 /33

Static Single Assignment (1/2)

e |n SSA, each variable is assigned exactly once, and every variable
is defined before its uses.
 Conversion

— For each definition, create a new version of the target variable (left-
hand side) and replace the target variable with the new variable.

— For each use, replace the original referred variable with the
versioned variable reaching the use point.

1 X =y + X ; 11 x1 = y0 + x0 ;
2 y=X+Yy; 12 yl = x1 + y0 ;
3 1T (y > 0) 13 if (yl > 0)

4 X=y; 14 X2 =yl ;

5 else 15 else

6 X =y + 1 ; 16 X3 =yl +1;

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 10 /33

Static Single Assignment (2/2)

e Use ¢ function if two versions of a variable are reaching one
use point at a joining basic block

— ¢(x4,x,) returns a either x; or x, depending on which block was
1, X2 1 2

executed
1 X =Y + X ; 11 x1 = yO + x0 ;
2 Y =X+Yy,; 12 y1 = x1 + y0 ;
3 1T (y > 0) 13 1f (y1l > 0)
4 X =Y, 14 x2 =yl ;
5 else 15 else
6 X =y +1; 16 X3 =yl + 1 ;
7 V=X—-Y ; 17 x4 = ¢p(X2, %X3);

18 y2 = x4 — yl ;

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 11 /33

Data Representations

* Primitive types
 Constants
e Registers (virtual registers)

e Variables
— local variables, heap variables, global variables

e |Load and store instructions
e Aggregated types

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 12 /33

Primitive Types

e Language independent primitive types with predefined sizes
— void: void
— bool: 11

— integers: 1[[N] where Nis 1to 2%3-1
e.g. 18, 116, 132, 11942652

— floating-point types:
hal T (16-bit floating point value)
Tloat (32-bit floating point value)
doub I e (64-bit floating point value)

e Pointer type is a form of <type>* (e.g. 132%*, (i32*)*)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 13 /33

Constants

Boolean (11): true and false
Integer: standard integers including negative numbers

Floating point: decimal notation, exponential notation,
or hexadecimal notation (IEEE754 Std.)

Pointer: null I is treated as a special value

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 14 /33

Registers

e |dentifier syntax
— Named registers: [%] [a-zA-Z$. J[a-zA-Z$. 0-9]*
— Unnamed registers: [%][0-9][0-9]*

* A register has a function-level scope.

— Two registers in different functions may have the same
identifier

* Aregister is assigned for a particular type and a value
at its first (and the only) definition

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 15 /33

Variables

In LLVM, all addressable objects (“Ivalues”) are explicitly allocated.

Global variables
— Each variable has a global scope symbol that points to the

memory address of the object
— Variable identifier: [@] [a-zA-Z$. J[a-zA-Z$. 0-9]*

Local variables
— The al loca instruction allocates memory in the stack frame.

— Deallocated automatically if the function returns.

Heap variables

— The mal loc function call allocates memory on the heap.

— The free function call frees the memory allocated by
malloc.

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 16 /33

Load and Store Instructions

e Load
<result> = load <type>* <ptr>[, align <n>]
e result: the target register
e type: the type of the data (a pointer type)
* ptr: the register that has the address of the data
* n:the alignment of the memory address (optional)

e Store
store <type> <value>, <type>* <ptr>[, align <n>]
e type: the type of the value
* value: either a constant or a register that holds the value
e ptr: the register that has the address where the data should be stored
* n:the alignment of the memory address (optional)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 17 /33

=

COWWO~NOOTPA,WNEPE

Variable Example

#include <stdlib.h> 1
int g =0 ; 8
int main() { 10
int t = 0O; 11
int * p; 12
p=malloc(sizeof(int));
free(p); 13
+
14
15
16
2014-10-07

Engineering LLVM IR and Measuring Condition Coverage of C Programs

@g = global i32 0, align 4

define 132 @main() #0 {

%t = alloca 132, align 4
store 132 0, 132* %t, align 4

%p = alloca 132*, align 8

%call call noalias 18*
@malloc(164 4) #2

%0 = bitcast 18* %call to

store 132* %0, 132** %p,
align 8

%1 = load 132** %p, align 8

132%*

18 /33

Aggregate Types and Function Type

e Array: [<# of elements> x <type>]
— Single dimensional array ex: [40 x 132],[4 X i8]
— Multi dimensional array ex: [3 x [4 x 18]],[12 x [10 x float]]

e Structure: type {<a list of types>}
— E.g. type{ 132, 132, 132 } type{ 18, 132 }

 Function: <return type> (a list of parameter types)
— E.g. 132 (i32), float (il6, i32*)*

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 19 /33

Getelementptr Instruction

e A memory in an aggregate type variable can be accessed by
load/store instruction and getelementptr instruction
that obtains the pointer to the element.

e Syntax:
<res> = getelementptr <pty>* <ptrval>{,<t> <idx>}*
* res: the target register

pty: the register that defines the aggregate type

ptrval: the register that points to the data variable

t: the type of index

idx: the index value

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 20 /33

Aggregate Type Example

1 struct pair {
2 int First;
3 Int second;
4

int arr!loi;

7 struct pair a;

11 %struct.pair = type{ 132, 132 }

12 define 132 @main() {
13 entry:

14

arr = alloca [10 x 132

8 a.first = hrr[l];

15 %a = alloca %struct.pair
16 Y%arrayidx = getelementptr
[10 x 32]* %arr,i132 0,164 1
17 %0 = load 132* %arrayidx
18 %First = getelementptr
%struct.pair* %a,132 0,132 O
19 %store 132 %0, 132* %first

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 21 /33

Integer Conversion (1/2)

e Truncate

— Syntax: <res> = trunc <iN1> <value> to <iN2>
where IN1 and INZ2 are of integer type, and N1 > N2
— Examples
e %X = trunc 132 257 to 18 ;%X becomes 18:1

e %Y = trunc 132 123 to 11 ;%Y becomes 1l:true
e %Z = trunc 132 122 to 11 ;%Z becomes 1l1l:false

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs

22 /33

Integer Conversion (2/2)

e /ero extension

— <res> = zext <iN1> <value> to <iN2> where
IN1 and IN2 are of integer type, and N1 < N2
— Fill the remaining bits with zero

— Examples

e X = zext 132 257 to 164 ;%X becomes 164:257
e %Y = zext 11 true to 132 ;%Y becomes 132:1

* Sign extension

— <res> = sext <iN1> <value> to <iN2> where
IN1 and IN2 are of integer type, and N1 < N2
— Fill the remaining bits with the sign bit (the highest order bit) of value

— Examples

e %X = sext 18 -1 to 116 ;%X becomes 116:65535
e %Y = sext 1l true to 132 ;%Y becomes 132:-1

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 23 /33

Other Conversions

Float-to-float
— fptrunc .. to, fpext .. to

Float-to-integer (vice versa)

— fptour .. to, tptosi .. to,uitofp .. to,
sitofp .. to

Pointer-to-integer
— ptrtoint .. to, Inttoptr .. to

Bitcast

— <res> = bitcast <tl> <value> to <t2>
where t1 and t2 should be different types and have the same
Size

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 24 /33

Computational Instructions

* Binary operations:
— Add: add, sub, fsub
— Multiplication: mul , fmul
— Division: udiv, sdiv, fdiv
— Remainder: urem, srem, frem

e Bitwise binary operations
— shift operations: shl, Ishl , ashr
— logical operations: and , or, Xor

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs

25 /33

Add Instruction

e <res> = add [nuw][nsw] <IN> <opl>, <op2>

— nuw (no unsigned wrap): if unsigned overflow occurs,
the result value becomes a poison value (undefined)

e E.g: add nuw 18 255, 18 1

— nsw (no signed wrap): if sighed overflow occurs,
the result value becomes a poison value

e E.g.add nsw 18 127, 18 1

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 26 /33

Control Representation

The LLVM front-end constructs the control flow graph (CFG) of
every function explicitly in LLVM IR

— A function has a set of basic blocks each of which is a sequence of
instructions

— A function has exactly one entry basic block

— Every basic block is ended with exactly one terminator instruction
which explicitly specifies its successor basic blocks if there exist.

e Terminator instructions: branches (conditional, unconditional), return,
unwind, invoke

As the instructions are represented as a form of CFG, it is very
convenient to analyze, transform the target program in LLVM IR

2014-10-07

Engineering LLVM IR and Measuring Condition Coverage of C Programs 27 /33

Label, Return, and Unconditional Branch

 Alabelis located at the start of a basic block
— Each basic block is addressed as the start label
— A label X is referenced as register %X whose type is label
— The label of the entry block of a function is “entry”

e Returnret <type> <value> | ret void

e Unconditional branch br label <dest>

— At the end of a basic block, this instruction makes a transition to
the basic block starting with label <dest>

— E.g: br label %entry

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 28 /33

Conditional Branch

e <res> = icmp <cmp> <ty> <opl>, <op2>
— Returns either true or false (11) based on comparison of two variables
(opl and op2) of the same type (ty)
— Cmp: comparison option

eq (equal), ne (not equal), ugt (unsigned greater than),

uge (unsigned greater or equal), ul t (unsigned less than),

ulle (unsigned less or equal), St (signed greater than),

sge (signed greater or equal), S1t (signed less than), sle (signed less or equal)

e br 11 <cond>, label <thenbb>, label <elsebb>

— Causes the current execution to transfer to the basic block <thenbb>
if the value of <cond> is true; to the basic block <elsebb> otherwise.

e Example:
i 11 %0 = load 132* %x
% it (x> yg _ 12 %1 = load i32* %y
2 {eturg L 13 %cmp = icmp sgt i32 %0, %1
return U, 14 br i1 %cmp, label %if.then, label %if.end

15 1f_then:

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 29 /33

Switch

e switch <iIN> <value>, label <defaultdest>
[<IN> <val>, label <dest> .]
— Transfer control flow to one of many possible destinations

— If the value is found (val), control flow is transferred to the
corresponding destination (dest); or to the default destination

(defaultdest)
— Examples:

1 switch(x 11 %0 = load 132* %X
2 cas(g %;{ 12 switch 132 %0, label %sw.default [
3 break ; 13 132 1, label %sw.bb
4 case 2- 14 132 2, label %SW-bbl]
5 break ; ;

’ 15 sw.bb:
6 default: 0 i
- break : 16 br label %sw.epilog
8 1} 17 sw.bbil:

18 br label %sw.epilog

19 sw.default:
20 br label %sw.epilog

21 sw.epiloqg:

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 30 /33

PHI (®) instruction

e <res> = phi <t> [<val 0>, <label 0>],
[<val 1>, <label 1>], .

— Return avalue val 1 of type t such that the basic block executed
right before the current one is of label 1

e Example
11 %0 = load 132* %X
_] ; 12 %c = 1cmp sgt 132 %0
= 2
Ly x>0) 7 x:0; 13 br 11 %c, label %c.t, %c.f
14 c.t:

15 %1 = load 132* %x
16 br label %c.end

17 c.f:
18 br label %c.end

19 c.end:
20 %cond = pht 132 [%1, %c.-t], [0, %c.f]
21 store 132 %cond, 132* %y

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 31 /33

Function Call

e <res> = call <t> [<fnty>*] <fnptrval>(<fn args>)
— T: the type of the call return value
— Tnty: the signature of the pointer to the target function (optional)
— Ffnptrval: an LLVM value containing a pointer to a target function
— fn args: argument list whose types match the function signature

e Examples:

11 @.str = [3 x 18] c”’%d\00”

1 printf(“%d”, abs(x)); 12 %0 = load i32* %x

13 %call = call 132 @abs(i132 %0)

14 %calll = call 132 (i8*, ...)*
@printf(18*
getelementptr (|3 x 18]* @.str,
132 0, 132 0),
132 %call)

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 32 /33

Unaddressed Issues

 Many options/attributes of instructions

e Vector data type (SIMD style)

* Exception handling

 Object-oriented programming specific features

e Concurrency issues

— Memory model, synchronization, atomic instructions

* http://llvm.org/docs/LangRef.html

2014-10-07 Engineering LLVM IR and Measuring Condition Coverage of C Programs 33 /33

	Engineering LLVM IR and �Measuring Condition Coverage of �C Programs
	Overview
	LLVM Compiler Infrastructure
	LLVM is Professional Compiler
	LLVM IR As Analysis Target
	LLVM IR At a Glance
	Example
	Contents
	LLVM IR Architecture
	Static Single Assignment (1/2)
	Static Single Assignment (2/2)
	Data Representations
	Primitive Types
	Constants
	Registers
	Variables
	Load and Store Instructions
	Variable Example
	Aggregate Types and Function Type
	Getelementptr Instruction
	Aggregate Type Example
	Integer Conversion (1/2)
	Integer Conversion (2/2)
	Other Conversions
	Computational Instructions
	Add Instruction
	Control Representation
	Label, Return, and Unconditional Branch
	Conditional Branch
	Switch
	PHI (𝛷) instruction
	Function Call
	Unaddressed Issues

