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First-Order Theories |

First-order theory T consists of

» Signature ¥ 1 - set of constant, function, and predicate
symbols

> Set of axioms At - set of closed (no free variables)
> r-formulae

A Y r-formula is a formula constructed of constants, functions,
and predicate symbols from X, and variables, logical connectives,
and quantifiers.

The symbols of 21 are just symbols without prior meaning — the
axioms of T provide their meaning.
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First-Order Theories |l

A Y r-formula F is valid in theory T (T-valid, also T = F),
iff every interpretation / that satisfies the axioms of T,

i.e. | = Aforevery A€ At (T-interpretation)
also satisfies F,

ie. | = F

A Y r-formula F is satisfiable in T ( T-satisfiable), if there is a
T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F; and F;, are equivalent in T (T-equivalent),
ffT = F o B,
i.e. if for every T-interpretation I, | = Fiff | = F;

Note:
» | = F stands for “F true under interpretation /”
» T |= F stands for “F is valid in theory T"
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Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of
formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of
quantifier-free formulae in T.

A theory T is decidable if T |= F (T-validity) is decidable for
every 2 r-formula F;

i.e., there is an algorithm that always terminate with “yes”, if
F is T-valid, and “no”, if F is T-invalid.

A fragment of T is decidable if T |= F is decidable for every
> r-formula F obeying the syntactic restriction.
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Theory of Equality T |

Signature:

Z::{:,a,b,c,---,f,g,h,---,p,q,r,---}

consists of

» =, a binary predicate, interpreted with meaning provided by

>

axioms

all constant, function, and predicate symbols

Axioms of Tg

1.

2
3.
4

Vx. x = x (reflexivity)
VX y.x=y — y=x (symmetry)

Vx,y,z.Xx=yANy=z — x=12z (transitivity)
. for each positive integer n and n-ary function symbol f,

VX1 s Xy Y1 ey Yne \jXi = Vi
— f(x1,...yxn) =F(V1,- -y ¥n) (function congruence)
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Theory of Equality T¢ I
5. for each positive integer n and n-ary predicate symbol p,
vxlu“’ yXny Y1y Yn- /\,’Xi =Y
— (p(x1,...,%n) < p(y1,---,¥n)) (predicate congruence)

(function) and (predicate) are axiom schemata.
Example:

(function) for binary function f for n = 2:
Vxi, X2, ¥1,¥2. X1 = y1 Axe = y2 — f(xa,x2) = f(y1,y2)
(predicate) for unary predicate p for n = 1:
Vx,y.x=y — (p(x) < p(y))

Note: we omit “congruence” for brevity.
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Decidability of Tg |

Tg is undecidable.

The quantifier-free fragment of Tg is decidable. Very efficient
algorithm.

Semantic argument method can be used for Tg

M: Prove
F:a=bAb=c — g(f(a),b) =g(f(c),a)

is Tg-valid.
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Decidability of Tg Il

Suppose not; then there exists a Tg-interpretation / such that

I = F. Then,

© 0N WD

L L | L V| R { N | B N

—
©

F is Tg-valid.

b=c
f(a) = f(c)
b=a

assumption

A\
A\
5, (transitivity)
(function)
(symmetry)

8, (function)

9 contradictory
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Natural Numbers and Integers

Natural numbers N ={0,1,2,---}
Integers Z=A{--,-2,-1,0,1,2,---}

Three variations:

» Peano arithmetic Tpa: natural numbers with addition,
multiplication, =

» Presburger arithmetic Ty: natural numbers with addition, =

» Theory of integers Ty: integers with +, —, >, =,
multiplication by constants
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1. Peano Arithmetic Tpa (first-order arithmetic)

ZPA: {Oa ]-a +, :}

Equality Axioms: (reflexivity), (symmetry), (transitivity),
(function) for +, (function) for - .

And the axioms:

1.

A

7.

Vx. =(x+1=0) (zero)
Vx,y. x+1l=y+1 — x=y (successor)
F[O] A (Vx. F[x] — F[x+1]) — V¥x. F[x] (induction)
Vx. x+0=x (plus zero)
Vx,y. x+(y+1)=(x+y)+1 (plus successor)
Vx.x-0=0 (times zero)
Vx,y.x-(y+1)=x-y+x (times successor)

Line 3 is an axiom schema.
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Example: 3x +5 = 2y can be written using > pa as
X+x+x+14+1+1+1+1=y+y

Note: we have > and > since
3x+5>2y writtas Jz.z#0A3x+b5=2y+z
3x+5>2y writeas dz.3x+5=2y+z

Example:
Existence of pythagorean triples (F is Tpa-valid):

F:3x,y,z x#0ANy#0ANz#0AX-x+y-y=2z-Zz
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Decidability of Peano Arithmetic

Tpa is undecidable. (Godel, Turing, Post, Church)
The quantifier-free fragment of Tpp is undecidable.
(Matiyasevich, 1970)

Remark: Godel’s first incompleteness theorem

Peano arithmetic Tps does not capture true arithmetic:

There exist closed X pa-formulae representing valid
propositions of number theory that are not Tpa-valid.

The reason: Tpa actually admits nonstandard interpretations.

For decidability: no multiplication
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2. Presburger Arithmetic Ty

Signature X : {0, 1, +, =} no multiplication!

Axioms of Ty (equality axioms, with 1-5):

1.
2.
3.
4.
5.

Vx. =(x+1=0) (zero)
Vx,y.x+1=y+1 — x=y (successor)
FIO] A (¥x. F[x] — F[x+1]) — Vx. F[x] (induction)
Vx. x+0=x (plus zero)
Vx,y. x+(y+1)=(x+y)+1 (plus successor)

Line 3 is an axiom schema.

Ty-satisfiability (and thus Ty-validity) is decidable
(Presburger, 1929)
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3. Theory of Integers Ty

Signature:
Yy {...,—2,-1,0,1,2, ...,=3,-2,2,3 ..., 4, —, > =}
where

» ...,—2,—-1,0, 1, 2, ... are constants

» ...,—3.,—2-,2., 3., ... are unary functions

(intended meaning: 2-xis x +x, =3 - x is —x — x — X)
» +,—, > = have the usual meanings.

Relation between Tz and T:
Tz and Ty have the same expressiveness:

» For every ¥;-formula there is an equisatisfiable y-formula.
» For every Y -formula there is an equisatisfiable ¥7-formula.

Y z-formula F and Xn-formula G are equisatisfiable iff:
F is Ty-satisfiable iff G is Ty-satisfiable
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> 7-formula to Xy-formula |

Example: consider the ¥ z-formula
Fo: Vw,x. dy,z. x+2y —z—7 > —3w + 4.

Introduce two variables, v, and v,, (range over the nonnegative
integers) for each variable v (range over the integers) of Fy:

VWp, Wn, Xp, Xn. 3Yp, Y, Zp, Zn-

Fi:
(%p —xn) +2(yp —¥n) —(2p — 20) =7 > —3(Wp — wp) + 4

Eliminate — by moving to the other side of >:

vWpa Whn, Xpy Xn. HYPv)/nvaa Zn.
Xp +2Yp+2zn+3wWp > Xp +2yn+2p + 7+ 3w, +4
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> 7-formula to X-formula 1l

Eliminate > and numbers:

VYWp, W, Xp, Xn. 3Yps Yns Zps Zp- 3U.
—(u=0) A Xp+yp+yp+2zat wp+wp+wp
=Xn+Yn+Yn+2Zp+ Wypt+ W+ W, +u
+14+1+141+1414+1+14+1+1+41

F3:

which is a Xy-formula equisatisfiable to Fy.

To decide Tz-validity for a z-formula F:

> transform —F to an equisatisfiable n-formula =G,
> decide Ty-validity of G.
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> 7-formula to X n-formula I
Example: The Y y-formula

Vx.dy. x=y+1

is equisatisfiable to the Xz-formula:

Vx.x>—-1 — dy.y>—-1Ax=y+1.
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Rationals and Reals

Signatures:
ZQ = {0? 17 +, = = 2}
Tk = Xou{}

» Theory of Reals Ty (with multiplication)

X-x=2 = x::I:\f2

> Theory of Rationals Tg (no multiplication)

~—
X+x

Note: strict inequality okay; simply rewrite

N~

xX+y>z

as follows:
“(x+y=2z) AN x+y>z
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1. Theory of Reals Ty

Signature:
ZR: {07 ]-7 +7 Ty Ty T Z}

with multiplication. Axioms in text.
Example:
Va,b,c. b> —4ac >0 < 3Ix. ax’+bx+c=0

is Tr-valid.

Tr is decidable (Tarski, 1930)
High time complexity
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2. Theory of Rationals Tg

Signature:
ZQ: {07 ]-7 +7 —y T/ >}

without multiplication. Axioms in text.
Rational coefficients are simple to express in Tg.

Example: Rewrite

1.2,
1.2
SX+ 3y =

as the X g-formula
3x+4y > 24

Tg is decidable
Quantifier-free fragment of Tg is efficiently decidable
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Recursive Data Structures (RDS) |

Tuples of variables where the elements can be instances of the
same structure: e.g., linked lists or trees.

1. Theory Teons (LISP-like lists)

Signature:
Y cons : {cons, car, cdr, atom, =}

where

cons(a, b)— list constructed by concatenating a and b
car(x) — left projector of x: car(cons(a, b)) = a
cdr(x)  — right projector of x: cdr(cons(a, b)) = b
atom(x) — true iff x is a single-element list

Note: an atom is simply something that is not a cons. In this
formulation, there is no NIL value.
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Recursive Data Structures (RDS) Il

Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of =

2. Function Congruence axioms

Vx1, %0, y1,¥2. X1 = X2 Ay1 = y» — cons(xi, y1) = cons(xz, y2)
Vx,y. x =y — car(x) = car(y)
Vx,y. x =y — cdr(x) = cdr(y)
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3. Predicate Congruence axiom

Vx,y.x =y — (atom(x) < atom(y))

4. Vx,y. car(cons(x, y)) = x (left projection)
5. ¥x,y. cdr(cons(x,y)) =y (right projection)
6. Vx. matom(x) — cons(car(x),cdr(x)) = x  (construction)
7. ¥x,y. -atom(cons(x, y)) (atom)

Note: the behavior of car and cons on atoms is not specified.

Teons is undecidable
Quantifier-free fragment of Tons is efficiently decidable
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Lists with equality

2. Theory TE, . (lists with equality)

Tclf_)ns = TE U Teons

Signature:
zE ) zcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of Tg and Tcons

E - .
Tcons 1s undecidable

Quantifier-free fragment of TE _ is efficiently decidable

Example: The YE —formula

car(x) = car(y) A cdr(x) = cdr(y) A matom(x) A —atom(y)
— ()= ()

is TE _-valid.

cons
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Suppose not; then there exists a T

cons-interpretation / such that

I = F. Then,
1. I ¥~ F assumption
2. | E  car(x) =car(y) 1, -, A
3. | E  cdr(x)=cdr(y) 1, =, A
4. | E  —atom(x) 1, -, A
5. | E —atom(y) 1, —,A
6. | Fx)=f) -
7. | E cons(car(x),cdr(x)) = cons(car( ), cdr(y))
3, (function)
8. | [ cons(car(x),cdr(x)) = x 4, (construction)
9. | E cons(car(y),cdr(y)) =y 5, (construction)
10. | E x=y 7, 8, 9, (transitivity)
11. I E  f(x)=1f(y) 10, (function)

Lines 6 and 11 are contradictory, so our assumption that / [~ F

must be wrong. Therefore, F is T5 -valid. Page 25 of 31



Theory of Arrays Tp

Signature:

1Az {[]7 '<'<]'>7 :}

where

» a[i] binary function —

read array a at index i (“read(a,i)")

» a(i<v) ternary function —

write value v to index i of array a (“write(a,i,v)")

Axioms
1. the axioms of (reflexivity), (symmetry), and (transitivity) of
Te
2. Va,i,j. i=j — a[i]l=a[j] (array congruence)
3. Ya,v,i,j.i=j — a(iav)[j]=v (read-over-write 1)
4. Ya,v,i,j.i#j — a(iav)[j] = a[j] (read-over-write 2)
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Note: = is only defined for array elements
F: alil=e — a(i<e)=a
not Ta-valid, but
F': alil=e — Vj. ali<e)]j] = a[j] ,
is Ta-valid.

Also
a=b — a[i] = bli]

is not Ta-valid: We have only axiomatized a restricted congruence.

Ta is undecidable
Quantifier-free fragment of Ty is decidable
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2. Theory of Arrays T, (with extensionality)

Signature and axioms of T, are the same as Ta, with one
additional axiom

Va,b. (Vi. a[li] = b[i]) < a=b (extensionality)

Example:

F: alil=e — a(i<e)=a

is T, -valid.

T, is undecidable
Quantifier-free fragment of T, is decidable
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First-Order Theories

Quantifiers QFF
Theory Decidable  Decidable

Te Equality — v
Tpa Peano Arithmetic — —
Ty Presburger Arithmetic v v
Tz Linear Integer Arithmetic v v
Tr Real Arithmetic Ve Ve
Tp Linear Rationals v v
Teons Lists — v
TE . Lists with Equality - v
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Combination of Theories

How do we show that

1<x A x<2A f(x)#f(1) N f(x)#f(2)

is (Te U Tz)-valid?
Or how do we prove properties about

an array of integers, or
alist of reals ...?

Given theories T; and T» such that
21N ¥ =

The combined theory T3 U T5 has
> signature X1 U X,

» axioms A; U Ar

{

}
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Nelson & Oppen showed that,

if
» validity of the quantifier-free fragment (qff) of T; is decidable,
» validity of qff of T is decidable, and
» certain technical simple requirements are met,

then validity of gff of T1 U T» is decidable.
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