
Decision Procedures inDecision Procedures in 
First Order LogicFirst Order Logic

Decision Procedures for
Equality Logicq y g

Daniel Kroening and Ofer Strichman 1



O tliOutline
Introduction

Definition, complexity
√

√

Reducing Uninterpreted Functions to Equality Logic 
Using Uninterpreted Functions in proofs

√

√

Simplifications

Introduction to the decision procedures
√

Introduction to the decision procedures
The framework: assumptions and Normal Forms
General terms and notionsGeneral terms and notions
Solving a conjunction of equalities
Simplifications

Decision Procedures 
An algorithmic point of view 2

Simplifications



Basic assumptions and notationsBasic assumptions and notations

Input formulas are in NNFInput formulas are in NNF
Input formulas are checked for satisfiability

Formula with Uninterpreted Functions: φUFFormula with Uninterpreted Functions: φ
Equality formula: φE

Decision Procedures 
An algorithmic point of view 3



First: conjunction of equalitiesFirst: conjunction of equalities

Input: A conjunction of equalities and disequalitiesInput: A conjunction of equalities and disequalities

1. Define an equivalence class for each variable. For 
each equality x = y unite the equivalence classes of 
x and y. Repeat until convergence.

2. For each disequality u ≠ v if u is in the same2. For each disequality u ≠ v if u is in the same 
equivalence class as v return 'UNSAT'. 

3 Return 'SAT'3. Return 'SAT'.

Decision Procedures 
An algorithmic point of view 4



ExampleExample

x1 = x2 Æ x2 = x3 Æ x4=x Æ x ≠ x1x1  x2 Æ x2  x3 Æ x4 x5 Æ x5 ≠ x1

Equivalence class Equivalence class

Is there a disequality between members of the same class ? 
Decision Procedures 

An algorithmic point of view 5

q y



Next: add Uninterpreted FunctionsNext: add Uninterpreted Functions

x1 = x2 Æ x2 = x3 Æ x4=x Æ x ≠ x1Æ F(x1)≠ F(x2)x1  x2 Æ x2  x3 Æ x4 x5 Æ x5 ≠ x1 Æ F(x1)≠ F(x2)

Equivalence class

Equivalence class Equivalence class

Decision Procedures 
An algorithmic point of view 6

Equivalence class



Next: Compute the Congruence ClosureNext: Compute the Congruence Closure

x1 = x2 Æ x2 = x3 Æ x4=x Æ x ≠ x1Æ F(x1)≠ F(x2)x1  x2 Æ x2  x3 Æ x4 x5 Æ x5 ≠ x1 Æ F(x1)≠ F(x2)

Equivalence class Equivalence class

Now - is there a disequality between members of the same class ?
This is called the Congruence Closure

Decision Procedures 
An algorithmic point of view 7

This is called the Congruence Closure



And now: consider a Boolean structureAnd now: consider a Boolean structure

x1 = x2 Ç (x2 = x3 Æ x4=x5 Æ x5 ≠ x1Æ F(x1) ≠ F(x2))x1  x2 Ç (x2  x3 Æ x4 x5 Æ x5 ≠ x1 Æ F(x1) ≠ F(x2))

Equivalence class Equivalence classes

case 1 case 2

Equivalence classes

Syntactic case splitting: this is what we want to avoid! 

Decision Procedures 
An algorithmic point of view 8



Deciding Equality Logic with UFsDeciding Equality Logic with UFs

Input: Equality Logic formula φUFInput: Equality Logic formula φ
Convert φUF to DNF
For each clause:

Define an equivalence class for each variable and each 
function instance. 
For each equality x = y unite the equivalence classes of x

d F h f ti b l F it th l fand y. For each function symbol F, unite the classes of 
F(x) and F(y). Repeat until convergence.
If all disequalities are between terms from differentIf all disequalities are between terms from different 
equivalence classes, return 'SAT'.  

R t 'UNSAT'
Decision Procedures 

An algorithmic point of view 9

Return 'UNSAT'.



Basic notionsBasic notions

φE: x = y Æ y = z Æ z ≠ xφ : x  y Æ y  z Æ z ≠ x

The Equality predicates: {x = y, y = z, z ≠ x}
hi h b kwhich we can break to two sets: 

E= ={x = y, y = z}, E≠ = {z ≠ x}
The Equality Graph GE(φE) = hV,E=,E≠i
(a.k.a “E-graph”)

y

x z

Decision Procedures 
An algorithmic point of view 10



Basic notionsBasic notions

φ1E: x = y Æ y = z Æ z ≠ x unsatisfiableφ1 : x  y Æ y  z Æ z ≠ x unsatisfiable
φ2

E: x = y Æ y = z Ç z ≠ x satisfiable

y

The graph GE(φE) represents an abstraction of φE

x z

g p (φ ) p φ

It ignores the Boolean structure of φE

Decision Procedures 
An algorithmic point of view 11



Basic notionsBasic notions

yy

x z

Dfn: a path made of E= edges is an Equality Path.
it *we write x =*z.

Dfn: a path made of E= edges + exactly one edge 
from E≠ is a Disequality Path. We write x ≠*y.

Decision Procedures 
An algorithmic point of view 12



Basic notionsBasic notions
y

x z

Dfn. A cycle with one disequality edge is a 
C di C lContradictory Cycle.
In a Contradictory Cycle, for every two nodes x,y it 
holds that x =* y and x ≠* y.

Decision Procedures 
An algorithmic point of view 13



Basic notionsBasic notions
y

x z

Dfn: A subgraph is called satisfiable iff the 
f h d d b dconjunction of the predicates represented by its edges 

is satisfiable.
Thm: A subgraph is unsatisfiable iff it contains a 
Contradictory cycley y

Decision Procedures 
An algorithmic point of view 14



Basic notionsBasic notions

Thm: Every Contradictory Cycle is either simple or 
contains a simple contradictory cycle

Decision Procedures 
An algorithmic point of view 15



Simplifications againSimplifications, again

Let S be the set of edges that are not part of any 
Contradictory Cycley y
Thm: replacing all solid edges in S with False, and 
all dashed edges in S with True preservesall dashed edges in S with True, preserves 
satisfiability

Decision Procedures 
An algorithmic point of view 16



Simplification: exampleSimplification: example
x3

x2x4 Fa
ls

e

x1

(x1 = x2 Ç x1 = x4) Æ
(x1 ≠ x3 Ç x2 = x3)
(x1 = x2 Ç True) Æ
(x1 ≠ x3 Ç x2 = x3)
(¬False Ç True) = True

Satisfiable!
Decision Procedures 

An algorithmic point of view 17

Satisfiable!



Syntactic vs Semantic splitsSyntactic vs. Semantic splits

So far we saw how to handle disjunctions throughSo far we saw how to handle disjunctions through 
syntactic case-splitting. 
Th h b d i h i lThere are much better ways to do it than simply 
transforming it to DNF: 

Semantic Tableaux, 
SAT-based splitting, 
others…

We will investigate some of these methods later in the g
course.

Decision Procedures 
An algorithmic point of view 18



Syntactic vs Semantic splits

Now we start looking at methods that split the search

Syntactic vs. Semantic splits

Now we start looking at methods that split the search 
space instead. This is called semantic splitting.

SAT is a very good engine for performing semantic 
splitting, due to its ability to guide the search, prune 
the search-space etc.

Decision Procedures 
An algorithmic point of view 19


