Decision Procedures in First Order Logic

Decision Procedures for Equality Logic

Daniel Kroening and Ofer Strichman

Part III – for Equality Logic and Uninterpreted Functions

- Algorithm I From Equality to Propositional Logic

 Adding transitivity constraints
 Making the graph chordal
 An improved procedure: consider polarity

 Algorithm II Range-Allocation
 - □ What is the small-model property?
 - □ Finding a small adequate range (domain) to each variable
 - □ Reducing to Propositional Logic

Summary

- 1. Let *E* denote the set of equality predicates appearing in ϕ^{E} . Derive a Boolean formula ϕ_{enc} by replacing each equality predicate $(x_i = x_j)$ in *E* with a new Boolean variable $e_{i,j}$. Encode disequality predicates with negations, e.g., encode $i \neq j$ with $\neg e_{i,j}$
- 2. Recover the lost transitivity of equality by conjoining ϕ_{enc} with explicit transitivity constraints jointly denoted by ϕ_{trans} . ϕ_{trans} is a formula over ϕ_{enc} 's variables and, possibly, auxiliary variables.
- The Boolean formula $\phi_{enc} \wedge \phi_{trans}$ should be satisfiable if only if ϕ^E is satisfiable. Further, it should be possible to construct a satisfying assignment to ϕ^E from an assignment to the $e_{i,j}$ variables.

Decision Procedure for Equality Logic

- We will first investigate methods that solve Equality Logic. Uninterpreted functions are eliminated with one of the reduction schemes.
- Our starting point: the E-Graph $G^{E}(\phi^{E})$
- Recall: G^E(\$\phi^E\$) represents an abstraction of \$\phi^E\$: It represents ALL equality formulas with the same set of equality predicates as \$\phi^E\$

Bryant & Velev 2000: the Sparse method

$$\begin{split} \phi^{\mathrm{E}} &= x_1 = x_2 \wedge x_2 = x_3 \wedge x_1 \neq x_3 \\ \phi_{\mathrm{enc}} &= e_1 \quad \wedge \quad e_2 \quad \wedge \quad \neg e_3 \end{split}$$

Encode all edges with Boolean variables

 (note: for now, ignore polarity)
 This is an abstraction
 Transitivity of equality is lost!
 Must add transitivity constraints!

$$\phi^{\mathrm{E}} = x_1 = x_2 \wedge x_2 = x_3 \wedge x_1 \neq x_3$$

$$\phi_{\mathrm{enc}} = e_{1,2} \wedge e_{2,3} \wedge \neg e_{1,3}$$

• For each cycle add a transitivity constraint

$$\begin{split} \phi_{\text{trans}} &= \qquad (e_{1,2} \wedge e_{2,3} \rightarrow e_{1,3}) \wedge \\ (e_{1,2} \wedge e_{1,3} \rightarrow e_{2,3}) \wedge \\ (e_{1,3} \wedge e_{2,3} \rightarrow e_{1,2}) \end{split}$$

Check: $\phi_{enc} \wedge \phi_{trans}$

Transitivity constraints

•
$$\phi^{\text{E}} = x_1 = x_2 \land ((x_2 = x_3 \land x_1 \neq x_3) \lor (x_1 \neq x_2))$$

•
$$\phi_{\text{enc}} = e_{1,2} \wedge ((e_{2,3} \wedge \neg e_{1,3}) \vee \neg e_{1,2})$$

- ϕ^{E} is satisfiable, then ϕ_{enc} is satisfiable. \Box Not vice versa
 - ϕ_{enc} is satisfiable, but not ϕ^E
 - We need transitivity constraints ϕ_{trans} !
- For variables x_i, x_j, and x_i, the constraint
 e_{i,j} ∧ e_{j,k}→e_{i,k} is called a transitivity constraint
 □ Transitivity constraints can be added to T for every three variables in φ^E (although it is possible to fine a small subset of them that is still sufficient)

- There can be an exponential number of cycles, so let's try to make it better.
- Thm: *it is sufficient to constrain simple cycles only*

- Still, there is an exponential number of simple cycles.
- Def. A chord of a cycle is an edge connecting two non-adjacent nodes of the cycle
- Thm [Bryant & Velev]: It is sufficient to constrain chord-free simple cycles_

Still, there can be an exponential number of chordfree simple cycles...

Solution: make the graph 'chordal' by adding edges.

- Dfn: A graph is chordal iff every cycle of size 4 or more has a chord.
- How to make a graph chordal ? eliminate vertices one at a time, and connect their neighbors.

Once the graph is chordal, we can constrain only the triangles.

 Note that this procedure adds not more than a polynomial # of edges, and results in a polynomial no. of constraints.

Further Improvement

- So far we did not consider the polarity of the edges.
- Claim: in the following graph $\phi_{\text{trans}} = e_3 \wedge e_2 \rightarrow e_1$ is sufficient, since contradictory cycles can be constrained more efficiently with polarity information

 See "Generating minimum transitivity constraints in P-time for deciding equality logic" in Satisfiability Modulo Theories (SMT) 2007