

Propositional Encoding - Decision Procedure

Daniel Kroening, Ofer Strichman Presented by Changki Hong

Decision procedures so far..

- The decision procedures so far focus on one specific theory
 - We know how to
 - Decide Equality logic with Uninterpreted Functions (EUF) :

 $- \hspace{0.2cm} (x_{\scriptscriptstyle 1} = x_{\scriptscriptstyle 2}) \hspace{0.2cm} \wedge \hspace{0.2cm} (f(x_{\scriptscriptstyle 2}) = x_{\scriptscriptstyle 3}) \hspace{0.2cm} \wedge \hspace{0.2cm} \dots$

– Decide linear arithmetic :

 $- \ 3x_{_1} + 5x_{_2} \geq 2x_{_3} \wedge x_{_3} \leq x_{_5}$

- How about a combined formula?
 - A combination of linear arithmetic and EUF:

 $- \ (x_{\scriptscriptstyle 2} \geq x_{\scriptscriptstyle 1}) \land (x_{\scriptscriptstyle 1} \text{ - } x_{\scriptscriptstyle 3} \geq x_{\scriptscriptstyle 2}) \land f(f(x_{\scriptscriptstyle 1}) \text{ - } f(x_{\scriptscriptstyle 2})) \neq f(x_{\scriptscriptstyle 3})$

• A combination of bit-vectors and uninterpreted functions:

$$- f(a[32], b[1]) = f(b[32], a[1]) \land a[32] = b[32]$$

7 8 8

Example

Changki Hong @ pswlab

Propositional Encodings

Combination of theories

- Approach 1 : Combine decision procedures of the individual theories.
 - Nelson-Oppen method
- Approach 2 : Reduce all theories to a common logic if possible (e.g. Propositional logic)
 - Combine decision procedure for individual theories with a propositional SAT solver.

Approach 2 In detail

- Two encoding schemes in the category of the approach 2
 - Eager encoding
 - SAT solver is invoked only once with no further interaction with decision procedure of each theories.
 - Lazy encoding
 - Keep interacting between SAT solver and decision procedures of each theories.
 - Almost every tool that participated in the SMT competitions in 2005-2007 belongs to this category of solvers.

Contents

Motivation

- Preliminaries
- Eager encoding
- Lazy encoding
- Conclusion

Preliminaries

Eager encoding

Eager encoding

- Perform a full reduction from the problem of deciding Σ -formulas to one of deciding propositional formulas.
- All the necessary clauses are added to the propositional skeleton.
- SAT solver is invoked only once, with no further interaction with decision procedure of each theories.
- Example
 - Equality logic and Uninterpreted Functions
 - Substitute equality literals into Boolean variables and add constraints
 - Array logic
 - Substitute array read operation into UF

Eager encoding

Algorithm 4. Eager-encoding

```
Input: A formula \phi

Output: "Satisfiable" if \phi is satisfiable and "Unsatisfiable" otherwise

1. function Eager-Encoding(\phi)

2. e(P) := Deduction(lit(\phi));

3. \phi_E := e(\phi) \land e(P);

4. <\alpha, res> := SAT-Solver(\phi_E);

5. if res ="Unsatisfiable" then return "Unsatisfiable";

6. else return "Satisfiable";
```

🗂 🗍 🚺

Two main engines

- SAT solver : assigns truth values to literals in order to satisfy the Boolean structure of the formula
- Decision procedure of the individual theories : checks whether this assignment is consistent in theory.
- Definition 1. (*Boolean encoder*)
 - Given a Σ-literal *l*, we associate with it a unique Boolean variable *e(l)*, which we call the *Boolean encoder* of this literal.
 - Given a Σ-formula t, e(t) denotes the Boolean formula resulting from substituting each Σ-literal in t with its Boolean encoder. We also call it as propositional skeleton.

Overview of lazy encoding

Example

- Let theory T be equality logic.
 - $\phi := x = y \land ((y = z \land x \neq z) \lor x = z)$
- 1. Compute propositional skeleton of the given formula
 - $\qquad \phi := \ e(x = y) \land ((e(y = z) \land e(x \neq z)) \lor e(x = z))$
 - Let $B := e(\phi)$
- 2. Pass *B* to a SAT solver
 - $\qquad \alpha := \{ e(x=y) \mapsto \text{TRUE}, \, e(y=z) \mapsto \text{TRUE}, \, e(x\neq z) \mapsto \text{TRUE}, \, \, e(x=z) \mapsto \text{FALSE} \}$
- 3. Decision procedure decides whether the conjunction of the literals corresponding to this assignment $(Th(\alpha))$ is satisfiable
 - $\qquad Th(\alpha) := x = y \land y = z \land x \neq z \land \neg (x = z)$
 - $\qquad \text{blocking clause}: e(\neg Th(\alpha)):= \neg e(x=y) \lor \neg e(y=z) \lor \neg e(x\neq z) \lor e(x=z)$
- 4. Pass $B \wedge e(\neg Th(\alpha))$ to a SAT solver.
 - $\qquad \alpha := \{ e(x = y) \mapsto \text{TRUE}, \, e(y = z) \mapsto \text{TRUE}, \, e(x \neq z) \mapsto \text{FALSE}, \ e(x = z) \mapsto \text{TRUE} \}$

Overview of lazy encoding

- α current assignment returned by SAT solver
- $Th(\alpha)$ conjunction of the literal corresponding to current assignment and we define each literal, denoted $Th(lit_i, \alpha)$, as follows:

$$Th(lit_i, \alpha) \doteq \begin{cases} lit_i & \alpha(lit_i) = \text{TRUE} \\ \neg lit_i & \alpha(lit_i) = \text{FALSE} \end{cases}$$

- t t is returned by DP_{τ} and it is called blocking clause or lemma. This clause contradicts the current assignment, and hence blocks it from being repeated.
- e(t) Boolean formula of the blocking clause.

7 6 1

Lazy algorithm

Algorithm 1. Lazy-basic

- Deduction
 - input conjunction of the literal corresponding to current assignment
 - output a tuple of the form <blocking clause, result> where the result is one of {"Satisfiable",

Changki Hong @ pswlab

Propositional Encodings

7 8 1

[&]quot;Unsatisfiable"}

Integration into DPLL

Algorithm 2. Lazy-DPLL

nput: A formula φ Dutput: "Satisfiable" if the formula is satisfiable, and "Unsatisfiable" otherwise
•
. function Lazy-DPLL
AddClauses($e(\phi)$);
if BCP() = "conflict" then return "Unsatisfiable";
while (true) do
if <u>Decide()</u> then
$< t, res > := Deduction(Th(\alpha));$
if res="Satisfiable" then return "Satisfiable";
AddClauses(<i>e(t)</i>);
while (BCP() = "conflict") do
0. backtrack-level := Analyze-Conflict();
1. if backtrack-level < 0 then return "Unsatisfiable";
2. else BackTrack(backtrack-level);
3. else
4. while (BCP() = "conflict") do
5. <i>backtrack-level := Analyze-Conflict();</i>
6. if backtrack-level < 0 then return "Unsatisfiable";
7. else BackTrack(<i>backtrack-level</i>);

Improvement

- Algorithm 2 does not call Deduction() until a full satisfying assignment is found.
 - Example
 - Assume that the Decide() procedure assigns $e(x_1 \ge 10) \mapsto \text{TRUE}$ and $e(x_1 < 0) \mapsto \text{TRUE}$.
 - Deduction() results in a contradiction.
 - Time taken to complete the assignment is wasted.
- Algorithm 2 can be improved by running Deduction before a full assignment to the Boolean encoder is available.
 - Contradictory partial assignment are ruled out early.
 - Implications of literals that are still unassigned can be communicated back to the SAT solver.
 - ex) once $e(x_1 \ge 10)$ has been assigned TRUE, we can infer that $e(x_1 < 0)$ must be FALSE and avoid conflict.

Improved Lazy-DPLL

Algorithm 3. DPLL(T)

DPLL (T)

Changki Hong @ pswlab

Propositional Encodings

Implementation details of DPLL(T)

- Deduction
 - Returning blocking clause
 - If S is the set of literals that serve as the premises in the proof of unsatisfiability, then the blocking clause is

$$t := \left(\bigvee_{l \in S} \neg l\right)$$

– Example

$$- Th(\alpha) := x = y \land y = z \land x \neq z \land \neg(x = z)$$

- blocking clause - $t := \neg(x = y) \lor \neg(y = z) \lor \neg(x \neq z) \lor x = z$

n n

Implementation details of DPLL(T)

Deduction

- Returning implied assignment instead of blocking clauses
 - $Th(\alpha)$ implies a literal lit_i , then

$$t := (lit_i \vee \neg \hat{Th}(\alpha))$$

- The encoded clause e(t) is of the form

$$(e(lit_i) \lor \bigvee_{lit_j \in Th(\alpha)} \neg e(lit_j))$$

- Example
 - Let $e(x_1 \ge 10) \mapsto \text{TRUE}, e(x_1 < 0)$ is unassigned yet.
 - Deduction detects that $\neg(x_1 < 0)$ is implied.

$$- t := \neg(x_{\scriptscriptstyle 1} \ge 10) \lor \neg(x_{\scriptscriptstyle 1} < 0)$$

 $- \ e(t) := (\neg(x_{_1} \ge 10) \lor \neg(x_{_1} < 0))$

Conclusions

Two encoding schemes

- Eager encoding
 - SAT solver is invoked only once with no further interaction with decision procedure of each theories.
- Lazy encoding
 - Keep interacting between SAT solver and decision procedure of each theories.
 - Almost every tool that participated in the SMT competitions in 2005-2007 belongs to this category of solvers.

n n