
Propositional Encoding p g
- Decision Procedure

Daniel Kroening, Ofer Strichman
Presented by Changki Hong

Decision procedures so far..

The decision procedures so far focus on one specific
theoryy

We know how to
− Decide Equality logic with Uninterpreted Functions (EUF) :

() (f())− (x1 = x2) Æ (f(x2) = x3) Æ …
− Decide linear arithmetic :

− 3x1 + 5x2 ≥ 2x3 Æ x3 ≤ x5

How about a combined formula?
A combination of linear arithmetic and EUF:A combination of linear arithmetic and EUF:
− (x2 ≥ x1) Æ (x1 - x3 ≥ x2) Æ f(f(x1) - f(x2)) ≠ f(x3)

A combination of bit-vectors and uninterpreted functions:
− f(a[32], b[1]) = f(b[32], a[1]) Æ a[32] = b[32]

2 / 22 Changki Hong @ pswlab Combination of Theories

Example

The architecture of Yices Satellite decision
procedure

Linear arithmetic Bit vectors Arrays Pointer

p

EUF
Core decision
procedure

DPLL-based SAT solver

from tool paper describing Yices

3 / 22 Changki Hong @ pswlab Propositional Encodings

p p g

Combination of theories

Approach 1 : Combine decision procedures of the
individual theories.

Nelson-Oppen method

Approach 2 : Reduce all theories to a common logic if
possible (e.g. Propositional logic)

Combine decision procedure for individual theories with a
propositional SAT solver.

4 / 22 Changki Hong @ pswlab Propositional Encodings

Approach 2 In detail

Two encoding schemes in the category of the approach 2
Eager encodingEager encoding
− SAT solver is invoked only once with no further interaction with

decision procedure of each theories.
Lazy encodingLazy encoding
− Keep interacting between SAT solver and decision procedures of

each theories.
− Almost every tool that participated in the SMT competitions in 2005-

2007 belongs to this category of solvers.

5 / 22 Changki Hong @ pswlab Propositional Encodings

Contents

Motivation
PreliminariesPreliminaries
Eager encoding
Lazy encodingLazy encoding
Conclusion

6 / 22 Changki Hong @ pswlab Propositional Encodings

Preliminaries

Choose the next
Basic architecture of DPLL SAT solver

While (true)
{

variable and value.
Return False if all
variables are assigned

if (Decide() == FALSE) return (SAT);
while (BCP() == “conflict”) {(()) {

backtrack-level = Analyze_Conflict();
if (backtrack-level < 0) return (UNSAT);if (backtrack level < 0) return (UNSAT);
else BackTrack(backtrack-level);

}

Apply repeatedly the
unit clause rule.
Return “conflict” if reached Backtrack until no conflict.}

}
a conflict

Backtrack until no conflict.
Return -1 if impossible

7 / 22

Eager encoding

Eager encoding
Perform a full reduction from the problem of deciding Σ -formulasPerform a full reduction from the problem of deciding Σ formulas
to one of deciding propositional formulas.
All the necessary clauses are added to the propositional skeleton.
SAT solver is invoked only once, with no further interaction with
decision procedure of each theories.
Examplea p e
− Equality logic and Uninterpreted Functions

− Substitute equality literals into Boolean variables and add constraints
Array logic− Array logic

− Substitute array read operation into UF

8 / 22 Changki Hong @ pswlab Propositional Encodings

Eager encoding

Algorithm 4. Eager-encoding

Input: A formula
Output: “Satisfiable” if is satisfiable and “Unsatisfiable” otherwise

1 f ti E E di ()1. function Eager-Encoding()
2. e(P) := Deduction(lit());
3. E := e() Æ e(P);
4. <α, res> := SAT-Solver(E);, (E);
5. if res =“Unsatisfiable” then return “Unsatisfiable”;
6. else return “Satisfiable”;

9 / 22 Changki Hong @ pswlab Propositional Encodings

Lazy encoding

Two main engines
SAT solver : assigns truth values to literals in order to satisfy theSAT solver : assigns truth values to literals in order to satisfy the
Boolean structure of the formula
Decision procedure of the individual theories : checks whether this
assignment is consistent in theoryassignment is consistent in theory.

Definition 1 (Boolean encoder)Definition 1. (Boolean encoder)
Given a Σ-literal l, we associate with it a unique Boolean variable
e(l), which we call the Boolean encoder of this literal.()
Given a Σ-formula t, e(t) denotes the Boolean formula resulting
from substituting each Σ-literal in t with its Boolean encoder. We
also call it as propositional skeletonalso call it as propositional skeleton.

10 / 22 Changki Hong @ pswlab Propositional Encodings

Overview of lazy encoding

Example
Let theory T be equality logic.Let theory T be equality logic.
− φ := x = y Æ ((y = z Æ x ≠ z) Ç x = z)

1. Compute propositional skeleton of the given formulap p p g
− φ := e(x = y) Æ ((e(y = z) Æ e(x ≠ z)) Ç e(x = z))

− Let B := e(φ)

2 Pass B to a SAT solver2. Pass B to a SAT solver
− α := {e(x = y) a TRUE, e(y = z) a TRUE, e(x ≠ z) a TRUE, e(x = z) a FALSE}

3. Decision procedure decides whether the conjunction of the literals
di t thi i t (Th()) i ti fi blcorresponding to this assignment (Th(α)) is satisfiable

− Th(α) := x = y Æ y = z Æ x ≠ z Æ ¬(x = z)

− blocking clause : e(¬Th(α)) := ¬e(x = y) Ç ¬e(y = z) Ç ¬e(x ≠ z) Ç e(x = z)

4. Pass B Æ e(¬Th(α)) to a SAT solver.
− α := {e(x = y) a TRUE, e(y = z) a TRUE, e(x ≠ z) a FALSE, e(x = z) a TRUE}

11 / 22 Changki Hong @ pswlab Propositional Encodings

Overview of lazy encoding

α Th(α)

Propositional
SAT solver

DPT = A decision procedure
for theory T

e(t) t()

• α - current assignment returned by SAT solver

• Th(α) - conjunction of the literal corresponding to current assignment and we define
each literal, denoted Th(liti, α), as follows:

• t - t is returned by DPT and it is called blocking clause or lemma. This clause y T g
contradicts the current assignment, and hence blocks it from being repeated.

• e(t) - Boolean formula of the blocking clause.

12 / 22 Changki Hong @ pswlab Propositional Encodings

Lazy algorithm

Algorithm 1. Lazy-basic
Input: A formula φInput: A formula φ
Output: “Satisfiable” if φ is satisfiable, and “Unsatisfiable” otherwise

1 function Lazy Basic (φ)1. function Lazy Basic (φ)
2. B := e(φ);
3. while (true) do
4 <α res> := SAT-Solver(B);4. <α, res> := SAT Solver(B);
5. if res =“Unsatisfiable” then return “Unsatisfiable”;
6. else
7. <t, res> := Deduction(Th(α)) ;7. t, res : Deduction(Th(α)) ;
8. if res =“Satisfiable” then return “Satisfiable”;
9. B := B e(t);

• Deduction
• input - conjunction of the literal corresponding to current assignment
• output - a tuple of the form <blocking clause, result> where the result is one of {“Satisfiable”,
“U ti fi bl ”}

13 / 22 Changki Hong @ pswlab Propositional Encodings

“Unsatisfiable”}

Integration into DPLL

Algorithm 2. Lazy-DPLL
Input: A formulaInput: A formula
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable” otherwise

1. function Lazy-DPLL
2. AddClauses(e()); If there is no more assignment to do2. AddClauses(e());
3. if BCP() = “conflict” then return “Unsatisfiable”;
4. while (true) do
5. if ￢Decide() then
6. <t, res>:=Deduction(Th(α));

If there is no more assignment to do

, (());
7. if res=“Satisfiable” then return “Satisfiable”;
8. AddClauses(e(t));
9. while (BCP() = “conflict”) do
10. backtrack-level := Analyze-Conflict();y ();
11. if backtrack-level < 0 then return “Unsatisfiable”;
12. else BackTrack(backtrack-level);
13. else
14. while (BCP() = “conflict”) do(())
15. backtrack-level := Analyze-Conflict();
16. if backtrack-level < 0 then return “Unsatisfiable”;
17. else BackTrack(backtrack-level);

14 / 22 Changki Hong @ pswlab Propositional Encodings

Improvement

Algorithm 2 does not call Deduction() until a full satisfying
assignment is found.g

Example
− Assume that the Decide() procedure assigns e(x1 ≥ 10) a TRUE

and (< 0) a TRUEand e(x1 < 0) a TRUE.

− Deduction() results in a contradiction.
− Time taken to complete the assignment is wasted.

Algorithm 2 can be improved by running Deduction before
a full assignment to the Boolean encoder is available.

Contradictory partial assignment are ruled out early.
Implications of literals that are still unassigned can be
communicated back to the SAT solvercommunicated back to the SAT solver.
− ex) once e(x1 ≥ 10) has been assigned TRUE, we can infer that

e(x1 < 0) must be FALSE and avoid conflict.

15 / 22 Changki Hong @ pswlab Propositional Encodings

Improved Lazy-DPLL

Algorithm 3. DPLL(T)
Input: A formulaInput: A formula
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable” otherwise

1. function DPLL(T)
2 AddClauses(e());2. AddClauses(e());
3. if BCP() = “conflict” then return “Unsatisfiable”;
4. while (true) do
5. if ￢Decide() then return “Satisfiable”;
6 repeat

Full assignment
6. repeat
7. while (BCP() = “conflict”) do
8. backtrack-level := Analyze-Conflict();
9. if backtrack-level < 0 then return “Unsatisfiable”;
10 else BackTrack(backtrack level);10. else BackTrack(backtrack-level);
11. <t, res>:=Deduction(Th(α));
12. AddClauses(e(t));
13. until res = Satisfiable

Partial assignment

16 / 22 Changki Hong @ pswlab Propositional Encodings

DPLL (T)

Decide SATDecide

Partial

SATFull assignment

BackTrack
Partial
assignment

backtrack-level ≥ 0

UNSATBCP Analyze-
Conflict backtrack-level < 0

Conflictα

Deduction AddClauses

Th(α)

e(t)tDeduction AddClauses
Satisfiable

17 / 22 Changki Hong @ pswlab Propositional Encodings

Implementation details of DPLL(T)

Deduction
Returning blocking clauseReturning blocking clause
− If S is the set of literals that serve as the premises in the proof of

unsatisfiability, then the blocking clause is

− Example
− Th(α) := x = y Æ y = z Æ x ≠ z Æ ¬(x = z)

− blocking clause - t := ¬(x = y) Ç ¬(y = z) Ç ¬(x ≠ z) Ç x = z

18 / 22 Changki Hong @ pswlab Propositional Encodings

Implementation details of DPLL(T)

Deduction
Returning implied assignment instead of blocking clausesReturning implied assignment instead of blocking clauses
− Th(α) implies a literal liti, then

− The encoded clause e(t) is of the form

Example− Example
− Let e(x1 ≥ 10) a TRUE, e(x1 < 0) is unassigned yet.
− Deduction detects that ¬(x1 < 0) is implied.

t (≥ 10) Ç (< 0)− t := ¬(x1 ≥ 10) Ç ¬(x1 < 0)

− e(t) := (¬(x1 ≥ 10) Ç ¬(x1 < 0))

19 / 22 Changki Hong @ pswlab Propositional Encodings

Conclusions

Two encoding schemes
Eager encodingEager encoding
− SAT solver is invoked only once with no further interaction with

decision procedure of each theories.
Lazy encodingLazy encoding
− Keep interacting between SAT solver and decision procedure of each

theories.
− Almost every tool that participated in the SMT competitions in 2005-

2007 belongs to this category of solvers.

20 / 22 Changki Hong @ pswlab Propositional Encodings

