NSNS s sSsSaaeasasaeaoaaoon

Propositional Encoding
- Decision Procedure

Daniel Kroening, Ofer Strichman
Presented by Changki Hong

Decision procedures so far..

NS —I—S—S—S— SNy sl S S O o 00

m The decision procedures so far focus on one specific
theory

e \We know how to

— Decide Equality logic with Uninterpreted Functions (EUF) :
- (z,=2,) A (flz,) =2,) A ...

— Decide linear arithmetic :
- 3z, + o5z, > 2z, Nz, < x,

m How about a combined formula?

f limanr Ar: i~ n nwA LT
1 IIUCJI.I d.lll.IIIIIUl.IL; U CuIr

rfcl)A (@, - zy =) A f(f() - f(=,)) # (cv?,)
o A comblnation of bit-vectors and uninterpreted functions:
- fa[32], b[1]) = f(b[32], a[1]) A a[32] = b[32)]

Changki Hong @ pswlab Combination of Theories 2122

Example

NS —I—S—S—S— SNy sl S S O o 00

m The architecture of Yices

Satellite decision
procedure

[Lineararithmetic} [Bit vectors] [Arrays J [Pointer J

o~ N / _—

Core decision
procedure

DPLL-based SAT solver

from tool paper describing Yices

Changki Hong @ pswlab Propositional Encodings 3/22

Combination of theories

NS —I—S—S—S— SNy sl S S O o 00

m Approach 2 : Reduce all theories to a common logic if
possible (e.g. Propositional logic)
e Combine decision procedure for individual theories with a
propositional SAT solver.

Changki Hong @ pswlab Propositional Encodings 4122

Approach 2 In detall

NS —I—S—S—S— SNy sl S S O o 00

m Two encoding schemes in the category of the approach 2

e Eager encoding

— SAT solver is invoked only once with no further interaction with
decision procedure of each theories.

e Lazy encoding

— Keep interacting between SAT solver and decision procedures of
each theories.

— Almost every tool that participated in the SMT competitions in 2005-
2007 belongs to this category of solvers.

Changki Hong @ pswlab Propositional Encodings 5/22

Contents

NS —I—S—S—S— SNy sl S S O o 00

Motivation
Preliminaries
Eager encoding
Lazy encoding
Conclusion

Changki Hong @ pswlab Propositional Encodings 6/22

Preliminaries

) S) 5 & IO
m Basic architecture of DPLL SAT solver

While (true)
{
If (Deci

Choose the next
variable and value.
Return False if all
variables are assigned

e() == FALSE) return (SAT);

while (BCP() == “conflict”) {
acktrack-level = Analyze Conflict();

Apply repeatedly the
unit clause rule.

Return “conflicty if reached
a conflict }

1

ifj(backtrack-level < 0) return
else BackTrack(backtrack-level);

J

SAT);

Backtrack until no conflict.
Return -1 if impossible

7122

Eager encoding
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

m Eager encoding
e Perform a full reduction from the problem of deciding X' -formulas
to one of deciding propositional formulas.
e All the necessary clauses are added to the propositional skeleton.
e SAT solver is invoked only once, with no further interaction with
decision procedure of each theories.

e Example

— Equality logic and Uninterpreted Functions
— Substitute equality literals into Boolean variables and add constraints

— Array logic
— Substitute array read operation into UF

Changki Hong @ pswlab Propositional Encodings 8/22

Eager encoding
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

m Algorithm 4. Eager-encoding

Input: A formula ¢
Output: “ Satisfiable” if ¢is satisfiable and “Unsatisfiable” otherwise

1. function Eager-Encoding(¢)

2 e(P) := Deduction(lit(¢));

3. e = e(p) Ne(P);

4. <a, res> := SAT-Solver(¢g);

5 iIf res =“Unsatisfiable” then return “Unsatisfiable”;
6 else return “ Satisfiable”;

Changki Hong @ pswlab Propositional Encodings 9/22

Lazy encoding

NS —I—S—S—S— SNy sl S S O o 00

®m Two main engines

e SAT solver : assigns truth values to literals in order to satisfy the
Boolean structure of the formula

e Decision procedure of the individual theories : checks whether this
assignment is consistent in theory.

m Definition 1. (Boolean encoder)

e Given a 2-literal I, we associate with it a unique Boolean variable
e(l), which we call the Boolean encoder of this literal.

e Given a 2-formula t, e(t) denotes the Boolean formula resulting
from substituting each 2-literal in t with its Boolean encoder. We
also call it as propositional skeleton.

Changki Hong @ pswlab Propositional Encodings 10/ 22

Overview of lazy encoding
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

m Example

e Lettheory T be equality logic.
—¢o=z=yN((y=zAx#2) V=2

=

Compute propositional skeleton of the given formula
- ¢=celx=y) AN((ely=2) Ne(z #2)) Ve(z = 2))
— Let B := e(9)

2. Pass Bto a SAT solver
— a = {e(x = y) » TRUE, e(y = z) = TRUE, e(z # z) = TRUE, e(z = z) — FALSE}

3. Decision procedure decides whether the conjunction of the literals
corresponding to this assignment (Th(«)) is satisfiable
— Th(a):=z=yANy=zAx#zA(x=2)
— blocking clause : e(—=Th(«)) := —e(x = y) V me(y = 2) V me(x # 2) V e(x = 2)

4. Pass B A e(—Th(«)) to a SAT solver.
- a = {e(x = y) » TRUE, e(y = z) > TRUE, e(x # z) — FALSE, e(x = z) » TRUE}

Changki Hong @ pswlab Propositional Encodings 11/22

Overview of lazy encoding

NS —I—S—S—S— SNy sl S S O o 00

N\ a Th(a) 4
Propositional DP = A decision procedure
SAT solver for theory T
J e(t) t \

e a - current assignment returned by SAT solver

* Th(a) - conjunction of the literal corresponding to current assignment and we define
each literal, denoted Th(lit;,), as follows:

P ;7 a(lit;) = TRUE
Th:([etzsoiJ - { _'htl Cl(ht,}) — FALSE

t - tis returned by DP;and it is called blocking clause or lemma. This clause
contradicts the current assignment, and hence blocks it from being repeated.

* ¢(t) - Boolean formula of the blocking clause.

Changki Hong @ pswlab Propositional Encodings 121722

Lazy algorithm
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

m Algorithm 1. Lazy-basic

Input: A formula ¢
Output: “Satisfiable” if ¢ is satisfiable, and “Unsatisfiable” otherwise

function Lazy Basic (¢)
B := e(¢);

1.

2

3 while (true) do

4, <a, res> := SAT-Solver(B);

5. If res ="Unsatisfiable” then return “Unsatisfiable”;
6 else

7

8

9

<t, res> :=|Deduction(Th(«))|;
hen return “Satisfiable™:

If res =“Satisfl
B:=B :

» Deduction
* input - conjunction of the literal corresponding to current assignment
* output - a tuple of the form <blocking clause, result> where the result is one of {“Satisfiable”,
“Unsatisfiable”}

Changki Hong @ pswlab Propositional Encodings 13722

Integration into DPLL

e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0
m Algorithm 2. Lazy-DPLL

Input: A formula ¢

Output: “Satisfiable” if the formulais satisfiable, and “Unsatisfiable” otherwise

1. function Lazy-DPLL

2 AddClauses(e(¢)); If there is no more assignment to do
3. if BCP() = “conflict” then return “Unsatisfetile”;

4. while (true) dg

5 if __Decide() fhen

6 <t, res>:=Deduction(Th(«));

7 If res="Satisfiable” then return “Satisfiable”;

8. AddClauses(e(t));

9. while (BCP() = “conflict”) do

10. backtrack-level := Analyze-Conflict();

11. If backtrack-level <0 then return “Unsatisfiable”;
12. else BackTrack(backtrack-level);

13. else

14. while (BCP() = “conflict”) do

15. backtrack-level := Analyze-Conflict();

16. If backtrack-level <0 then return “Unsatisfiable”;
17. else BackTrack(backtrack-level);

Changki Hong @ pswlab Propositional Encodings 14122

Improvement

NS —I—S—S—S— SNy sl S S O o 00

m Algorithm 2 does not call Deduction() until a full satisfying
assignment is found.

e Example

— Assume that the Decide() procedure assigns e(z, > 10) — TRUE
and e(x, < 0) —» TRUE.

— Deduction() results in a contradiction.
— Time taken to complete the assignment is wasted.

m Algorithm 2 can be improved by running Deduction before
a full assignment to the Boolean encoder is available.

e Contradictory partial assignment are ruled out early.

e Implications of literals that are still unassigned can be
communicated back to the SAT solver.

— ex) once e(z, > 10) has been assigned TRUE, we can infer that
e(x, < 0) must be FALSE and avoid conflict.

Changki Hong @ pswlab Propositional Encodings 15722

Improved Lazy-DPLL

NS —I—S—S—S— SNy sl S S O o 00

m Algorithm 3. DPLL(T)

Input: A formula ¢

1. function DPLL(T)
2

3
4.
5.
6

7
8.
9.
10.
11.

12.
13.

Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable” otherwise

AddClauses(e(®));
if BCP() = “conflict” then return “Unsatisfiable”;
while (true) da

f “Decide() then return “Satisfiable”;|] Full assignment
repeat

/" while (BCP() = “conflict”) do
backtrack-level := Analyze-Conflict();

Aleca Danl,Tranl/hanlitvanl, TAawval):
Ciot DaLRKiIlTaLRK{baLRhLlLldaLK-Icyvl),

<t, res>:=Deduction(Th(a));

_ AddClauses(e(t)),

If backtrack-level < 0 then return “Unsatisfiable”;

Partial assignment

~

until res = Satistiable

Changki Hong @ pswlab Propositional Encodings

16 /22

DPLL (T)

A N & OO &S OOl

[
L

Decide SAT

Full assignment

Partial

)
)
assignmen 4[BackTrack }

backtrack-level > 0

~
— Conflict f Analyze- UNSAT
L Conflict backtrack-level < 0

Sam{ Deduction

—___
~

Changki Hong @ pswlab

AddClauses J

S

Propositional Encodings 17 /22

Implementation details of DPLL(T)

NS —I—S—S—S— SNy sl S S O o 00

m Deduction

e Returning blocking clause

— If S'is the set of literals that serve as the premises in the proof of
unsatisfiability, then the blocking clause is

t = (,\,/.ﬁg)

— Example
— Th(a) = z=yANy=zANz#zA(x=2)
— blockingclause - t:==(x =y) Va(y=2) Va(x#2) V==

Changki Hong @ pswlab Propositional Encodings 181722

Implementation details of DPLL(T)

NS —I—S—S—S— SNy sl S S O o 00

m Deduction

e Returning implied assignment instead of blocking clauses
— Th(«) implies a literal lit,, then

t:= (lit; v =Th(a))
— The encoded clause e(t) is of the form
(e(lit;) v \/ —It':(j'?:ﬁj))
lit;€Th(o)

— Example
— Let e(x, > 10) — TRUE, e(z, < 0) is unassigned yet.
— Deduction detects that —(x, < 0) is implied.
— t:==(z, > 10) V =(z, < 0)
— e(t) := (=(z, > 10) V =(z, < 0))

Changki Hong @ pswlab Propositional Encodings 19722

Conclusions

NS —I—S—S—S— SNy sl S S O o 00

m Two encoding schemes

e Eager encoding

— SAT solver is invoked only once with no further interaction with
decision procedure of each theories.

e Lazy encoding

— Keep interacting between SAT solver and decision procedure of each
theories.

— Almost every tool that participated in the SMT competitions in 2005-
2007 belongs to this category of solvers.

Changki Hong @ pswlab Propositional Encodings 20/ 22

