Concolic Testing of the Multi-sector
Read Operation for
Flash Memory File System

Moonzoo Kim and Yunho Kim
Provable Software Lab,

CS Dept, KAIST, South Korea
http://pswlab.kaist.ac.kr

KAIST

Summary of the Talk

. eman
File

: Unified
Paging

Storage
Platform

System

ector .
. ranslatio

Layer 0S
ocC dapt—
tion
odule
) FUJIFILM e

. ow Leve
577 D4 95
\ o

XxD-Pieture Gard

256 ms N

OneNAND — Flash Memory Devices

e Provable Software Lab @ KAIST has applied various formal verification

technologies to the Unified Storage Platform code
OneNAND™ flash memory

for the Samsung

Conventional model checking: NuSMV and Spin [Spin 08]
Software model checking: C-Bounded Model Checker [ASE 08]

In this talk, yet another approach using concolic testing.

Concolic Testing of the Multi-sector Read Operation Vioonzoo Kim et
2/20 & . P al. Provable SW KAIST
for Flash Memory File System

[N PN

Overview

Part |: Background
— Overview of the Unified Storage Platform (USP)

— Summary of the Previous Studies on USP
e Prioritized read operation (PRO)@ Demand Paging Manager (DPM)
e Semaphore matching (SM)@ Block Management Layer (BML)
e Semaphore exception handling (SEH)@ STL~BML
e Multi-sector read operation (MSR) @ Sector Translation Layer (STL)

Part Il: Concolic testing experiments on MSR
— Overview of Concolic Testing
— Multisector Read Operation

— Experiments on MSR by using Concolic Testing
e Testbed and experiment setup
* Experiments with a constraint-based environment model
e Experiments with an explicit-writing environment model

— Lessons Learned
Conclusion

KAIST

Overview of the Unified Storage Platform

e Characteristics of OneNAND® flash

— Each memory cell can be written
limited number of times only

e Logical-to-physical sector mapping
e Bad block management
e Wear-leveling
— XIP by emulating NOR interface
through demand-paging scheme

e Multiple processes access the
device concurrently

e Urgent read operation should have
a higher priority

* Synchronization among processes
is crucial

— Performance enhancement
e Multi-sector read/write
* Asynchronous operations
e Deferred operation result check

Unit Testing of Flash Memory Device Driver through
4/20 a SAT-based Model Checker

Source:
Software Center
of Samsung
Electronics ‘06

Unified
Storage
Platform

0S
Adapt-
ation
Module
Low Level (LLD
D)

OneNAND Flash Memory Devices \

Moonzoo Kim et

al. Provable SW KAIST
~L

Summary of the Previous Studies (1/3)

e SAT-based software model checker (i.e. CBMC) was successfully
applied to industrial flash translation layer written in C [ASE 08]
— Prioritized read operation

* Detected a bug of not saving the status of suspended erase operation (~234
lines long)

— Concurrency handling

e Confirmed that the BML semaphore was used correctly in all 14 BML
functions (~220 lines long on average)

e Detected a bug of ignoring BML semaphore exceptions in a call graph
(~2500 lines long on average)

N\

\ i Bug ".
________\A\.:W/_{____Efla|nta|nWearLeveI h.--.% detected '.III
STL_Write |- _ A et

, T \ | BMLRead ||
[SM_WriteSectors K KeepB tDepth 3y _PartalMerge =] _ConstructSam Loadsam GetSinfo Ky — e e
—] = - SM_ — _Keep oundsOfDept }7'| | g =K H - _ ’ OAML Acauiresii ™
STL_AWrit AN / —
STL_Delete

\ e [f=-=——————————
N\ A BML_StorePIExt |
[EML-SiorePlExt J
| _Delete H SM_MarkDeletion }——"
s

BML_IOCH ||
|
|

Concolic Testing of the Multi-sector Read Operation Moonzoo Kim et
5/20 & . . al. Provable SW KAIST
for Flash Memory File System

[N PN

Summary of the Previous Studies (2/3)

Main target function: multi-sector read @ STL
— Data intensive application due to SAMs and PUNs

— Deterministic behaviors, except initial setting of data distribution

— Data abstraction is barely possible for SAMs

Performance comparison [Spin 08]
SAT-based bounded model checker (CBMC) > explicit model checking (Spin) > symbolic

model checker (NuSMV)

CEGAR based software model checker (i.e. Blast) failed to analyze MSR due to its limitation on

array/pointer operations

100000 - Time complexity LS = 6

10000

Seconds

m—

o

()

1000
100
y
10 -

Spin

—8—NuSMV
——(CBMC

> A number’of ph)§sical vhits 10

100000

10000

1000

Megabytes

100

10

Space complexity LS = 6

[|
i
[|
[|
—
| B Spin
="NuSMV
—>=CBMC

> A fumber’of ph)§sical thits 10

6/20

KAIST

Summary of the Previous Studies (3/3)

e However, we are still limited to miniature
world (~10 PUNSs) for the complete analysis.
Thus, we may try

— Theorem proving without bound
— Testing

e Applying concolic testing aiming for high coverage and
better scalability

Moonzoo Kim et

al. Provable SW KAIST
I~k

Concolic Testing of the Multi-sector Read Operation

7/20 for Flash Memory File System

Part Il: Concolic testing experiments on MSR

Moonzoo Kim et

8/20 Concolic Testing of the Multi-sgctor Read Operation al. Provable SW MIST
for Flash Memory File System L

Concolic (CONCrete + symbOLIC) Testing

Automated Scalable Unit Testing of real-world C Programs

— Execute unit under test on automatically generated test inputs so that
all possible execution paths are explored

e (a.k.a) explicit path model checking
In a nutshell

— Use concrete execution over a concrete input to guide symbolic
execution

* A symbolic path formula is obtained at the end of an execution

— One branch condition of the path formula is negated to generate the
next execution path

— The next execution path formula is solved by SMT solver to generate
concrete input values, and so on

— No false positives or scalability problem

Concolic Testing Example

int main(void) { e Test input: (a,b,c)
inta, b, ¢, d; // Test input
CREST _int(a);

CREST _int(b);

— a,b,c are declared as symbolic non-
deterministic values by CREST _int();

CREST_int(c); e 4 test cases generated
if (a==1) { - (0,0,0)
if (b ==2){ initial random input
if (c==3%a+b){ Executed path formula: al=1

fprintf(stderr, "GOALN\n"); * Next path formula: I(a!=1) (i.e, a ==1)
b1 _ (L00)

%, e Executed path formula: a==1 && b!=2

e Next path formula: a==1 && !(b!=2)

— (1,2,0)

e Executed path formula:
a==1 && (b==2) && (c!=3*a +b)
e Next path formula:
a==1 && (b==2) && !(c!=3*a +hb)
— (1,2,5)
e Covered all paths

Logical to Physical Sector Mapping

1:N mapping from a LUN to PUNs

LUNO LUN 1 LUN 2 LUN 3 LUN 4 LUNS LUN 6
Y v v

PUN 3 PUN 2 PUN1 PUN 6 PUN 4
v

PUN 0 PUN 5

STEP 0

STEP 1

STEP 2

STEP 3

STEP 4 STEP 5
LONO} {LUNO} ["LUNO! {"LUNO? {'LUNO: { LUNO :
[[[[[[
PUN 1 PUN 1 PUN 1 PUN 1 PUN 1 PUN 1
LSO LSO LSO LS 6 LS 6
LS 1 £ES-14 LS4 LS4
LS 1 LS 1 LS 1
LS 0 LSO
} ! } ! |
Empty Write LSO WriteLS1 Modify LS1 Modify LS 0 PUN 4
Physical Unit
LS 2
Sector mapping i

Write LS 2

11

Concolic Testing of the Multi-sector Read Operation
for Flash Memory File System

LUNO
........ (-
SAM1
: , PUN 1
Logical offset | Physical offset
0 3 LSO
1 2 LSt
2 >~ .S 1
3 A LSO
|
SAM4 PUN 4
Logical offset | Physical offset
0 ¢ LS2
1
2 0
3

Sector Allocation Map (SAM)

In flash memory, logical
data are distributed over
physical sectors.

Moonzoo Kim et

al. Provable SW KAIST
[P

Examples of Possible Data Distribution

LUO LUl
SAMO~SAM4 i PU0~/EDU4 i SAMO~SAM4 PUO~PU4
Sector 0 (1 0 E 3 3| B
Sector1 | |1 11 AB F 0 2 D
Sector2 | 2 C 3 F
Sector 3 3 D 1 AC| E
(a) A distribution of (b) Another distribution of
"ABCDEF" "ABCDEF"
e Assumptions * Exponentially many

distributions according to
size of data and # of PUNs

_ — ex> 2.7 x 108 distributions for
— each sector is 1 byte long 6 sectors long data over 10

PUNSs

— there are 5 physical units
— each unit has 4 sectors

Environment Modeling

* Environment model creation

— The environment of MSR (i.e., PUs and SAMs configurations) can be described

by invariant rules. Some of them are
1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th offset

of the j th SAM is valid and indicates the k’'th PS,
Ex> 1st LS (‘B’) is in the 2nd sector of the 5th PU, then SAM5([1] ==

i=1 k=2 =5

3. For one LS, there exists only one PS that contains the value of the LS:

The PS number of the i th LS must be written in only one of the (i mod 4)
th offsets of the SAM tables for the PUs mapped to the corresponding LU.

Vi, g, k (LS[i] = PUJj].sect[k] — (SAM[j].valid]i mod m] = true
& SAM{[jl.of fsetli mod m] =k
& Ip.(SAM [p|.valid[i mod m] = false)

where p # 7 and PU[p] is mapped t-{_)L:;!th LUY))

SAMS5

Logical offset | Physical offset

0

3

2

1
2
3

.S 1('B))

LS 0(‘A")

M
:><
N

e Hypotheses
— H1: Concolic testing is effective for analyzing the MSR code

— H2: Concolic testing is more efficient than model checking for
analyzing the MSR code

e Effectiveness evaluation through mutation analysis

— We injected the three types of frequent bugs and one corner
case bug

* 3instances of off-by-1 bugs b, to b,
— Ex. while(numScts>0) -> while(numScts>1)

e 3instances of invalid condition bugs b,, to b,
— Ex. if(SAM[i].offset[j]1=0xFF) -> if(SAM[i].offset[j]==0xFF)

* 3 instances of missing statement bugs b,, to b,;
— Ex. Missing nScts=1 in the second loop

* A corner case bugb_

— readScts = readScts - conScts - (PU[1].sect[3]=="A" && PU[0].sect[0]=="B’ &&
PU[2].sect[3]=="C’ && PU[1].sect[1]=="D’ && PU[4].sect[3]=="F’ &&
PU[3].sect[2]=="F')

Testbed for the Concolic Testing

T ’ b W T W Wl 5 w8 -w s § -_" w’ §] W w 8§ 8

* Intel Core2Duo 3Ghz processor and 16 gigabytes of memory
e For concolic testing, CREST 0.1.1 with DFS option was used

— CREST does not support dereferencing of pointers and array index
variables in the symbolic analysis.

* the target MSR code was modified to use an array representation of the
SAMs and PUs.

— gcc4.3.0, Yices 1.0.19
e For model checking, CBMC 2.6 and MiniSAT 1.14 were used.

— The target MSR codes used for concolic testing and model checking
are identical

Constraint-based Environment Model

 We have to specify test input
variables as symbolic variables

— punli].sect]j]
— SAM[i].offset][j]

* and put constrains on them
— If assigned input value does

not satisfy the constraints (i.e.

invalid test case generated), a
current iteration terminates
immediately without testing

MSR (goto out);

for (i=0; i<NUM_PUN; i++){ for (j=0; j<SECT_PER_U; j++){
CREST_unsigned_char(punli].sect[j]);
CREST_unsigned_char(SAM[i].offset[j]); } }

for (i=0; i<NUM_LS_USED; i++){
for (j=0; j<NUM_PUN; j++){
for (k=0; k<SECT_PER_U; k++){
if (pun[jl.sectlk] == "a'+i){
if i < SECT_PER_U && j < NUM_PUN_LUNO ||
SECT_PER_U <= i &8& j >= NUM_PUN_LUNO){
valid[i] = 1;
telse{ goto OUT; }
}else continue;
if (1(!(a" + i == pun[jl.sect[k]) ||
(SAM[j].offset[((i>=SECT_PER_U)?
(i-SECT_PER_U):i)]==k)
){ goto OUT; }

Vi7.F (LS = PO sect[h] = (SAMU] validli mod] = true
& SAM{[jl.of fsetli mod m] = k
& Ip (SAM [p].valid]i mod m] = false)

where p # 7 and PU[p] is mapped t-UL%Jth LU))

7

Result w/ Constraint-based Model (1/2)

14%

1.60.E+07
1.40.E+07
1.20.E+07
1.00.E+07
8.00.E+06

10%

8%

6%

4%

2.00.E+06 m l 2%
0.00.E+00 == 0%

12%

6.00.E+06
4.00.E+06

of Test Cases

Valid Test Case Ratio(%)

4 PUs w/4 PUs w/5 PUs w/5 PUs w/ 4 PUs w/ 4 PUs w/ 5 PUs w/ 5 PUs w/
5LSes 6 LSes 5 LSes 6 LSes 515 s 6Ll5%s 5 1Ses 6 LSes
(a) Total number of test cases generated (b) Ratio of valid test cases/all test cases

e Only ~10% of generated test cases are valid

— Causing significant overhead

e However, valid test cases generated cover all distribution cases
— i.e. 100% path coverage achieved
— Consequently, all bugs b,, to b;; as well as b, were detected

Concolic Testing of the Multi-sector Read Operation Moonzoo Kim et al. Kn
17/20 for Flash Memory File System Provable SW Lab IST

Result w/ Constraint-based Model (2/2)

100000

10000

1000

Time(s)

100

10

—#—5 LS CREST Constraint
—+—5 LS CBMC
/ —<—6 LS CREST Constraint

~—®—6 LS CBMC

x;?z_if—i

4PUs 5PUs 6PUs 7PUs 8PUs

(a) Total analysis time

Execution Time Ratio (%)

100%

80%

60%

40%

20%

0%

I\I/J\\I B Concolic
exe

Yices

B System

111

4 PUs w/ 4 PUs w/ 5 PUs w/ 5 PUs w/
5LSes 6LSes 5LSes 6 LSes
(b) Time ratio of analysis steps

e Concolic testing is order of magnitude slower than CBMC
— Concolic execution, SMT solving, system execution (i.e process fork and

release) constitutes the overall overhead

— Particularly, numerous invalid test cases (~90% of all test cases) worsen

18/20

the performance

Concolic Testing of the Multi-sector Read Operation
for Flash Memory File System

Moonzoo Kim et

al. Provable SW I(AIST

[N PN

Explicit Environment Model

Explicit environment
model writes data to
physical sectors explicitly

e Thus, creating invalid test
cases much less than the
constraint-based model

Test input variables
— idxPU and idxSect for
each logical data
CREST has a limitation on
array index variable

— We should expand array
index variables using switch
statements

01:for (i=0; i< NUML_LS; i++){

02: unsigned char idxPU, idxSect;
03: CREST_unsigned_char(idxPU);
04: CREST_unsigned_char(idxSect);
05: ...

06: // The switch statements encode the following
statements:

07: // PU[idxPu].sect[idxSect]= LS[i];
08: // SAM[idxPu].sect[i]= idxSect;
09: switch(idxPU){

10: case 0O: switch(idxSect) {

11: case 0: PU[O].sect[0] = LSIi];

12: SAMIO].offset[i] = idxSect; break;
13: case 1: PU[idxPU].sect[1] = LSJi];

14: SAMIO].offset[i] = idxSect; break;
15: .}

16: break;

17: case 1: switch(idxSect) {

Result w/ Explicit Environment Model (1/2)

70%

1.40.E+07
Q 60%
1.20.E+07 <
S 50%
§ 100.E+07 5 7
(] 0,
S 800E+06 g 40%
7} O
E 6.00.E+06 w 30%
s g
% 4.00.E+06 - 20%
s
. I 1 finnn
0.00.E+00 - = - - 0% -
cE S| © . S/ © e T | © | g © g T
s T | ® T |8 T |8 B c s,/ &8 5,8 5| &8 &
i X 7 X k7 X 7 X k7 = k7 x k) x kS x
c o c v c v c v c v c v c v c v
o o (o] (@] o] (@] (@] (@]
(@) |9 |®)] (@) |9 (&) (&) |9)
4 PUs 5 Lses|4 PUs 6 Lses|5 PUs 5 Lses|5 PUs 6 Lses 4 PUs 5 Lses|4 PUs 6 Lses|5 PUs 5 Lses|5 PUs 6 Lses
(a) Total number of test cases generated (b) Ratio of valid test cases/all test cases

e ~60% of generated test cases are valid

— total test cases generated is 1/5 of the constraint-based one

 Again, valid test cases generated cover all distribution cases
— Consequently, all bugs b,, to b;; as well as b, were detected

Moonzoo Kim et

al. Provable SW KAIST

[N PN

Concolic Testing of the Multi-sector Read Operation

20/20 for Flash Memory File System

Result w/ Explicit Environment Model (2/2)

100000
—®=5 LS CREST constraint 100%
] ici —_
10000 e 5 LS CREST explicit S)
—k—5 LS CBMC o 80% ® Concolic
1000 he =6 LS CREST constraint § oxe
O —#—6 S CREST explicit o 060% ® Vices
o £
E —®—6 LS CBMC =
= 100 e 40%
o W System
5
o 209 exe
10 g 20%
(A7)
0%

1

4 PUs w/ 4 PUs w/ 5 PUs w/ 5 PUs w/
5LSes 61LSes 5 1LSes 6 LSes
(a) Total analysis time (b) Time ratio of analysis steps

4 PUNs 5PUNs 6PUNs 7PUNs 8 PUNs

 Still, concolic testing is order of magnitude slower
than CBMC

— In this case, SMT solving is a major bottleneck, taking
~75% of total execution time

Moonzoo Kim et

al. Provable SW KAIST

[N PN

Concolic Testing of the Multi-sector Read Operation

21/20 for Flash Memory File System

Lessons Learned

Effectiveness of Concolic Testing
Low Efficiency of Concolic Testing

— Poorer performance compared to CBMC

— But still it can be practically scalable by aiming branch coverage, not
path coverage

Importance of an Environment Model

— Environment model constitutes an important part of any serious
verification tasks

Hard characteristic of MSR for Concolic testing
— Different values of one SAM entries leads to different execution paths
— Hard to apply abstraction

Future Works

e Study characteristics of symbolic path formulas
— Apply heuristics to optimize solving performance
e Build a concolic testing tool which overcomes the

limitation of CREST and can be tuned for embedded
software environment

— Currently discussing with Samsung Advanced Institute of
Technology.

e Build a mock flash FTL, which can be used in a concolic
testing framework

— Inspired by Microsoft [AST 2009]

KAIST

