Overview Graph Coverage Criteria (Introduction to Software Testing Chapter 2.1, 2.2)

Paul Ammann \& Jeff Offutt

Graph Coverage Criteria Subsumption

Covering Graphs (2.1)

- Graphs are the most commonly used structure for testing
- Graphs can come from many sources
- Control flow graphs
- Design structure
- FSMs and statecharts
- Use cases
- Tests usually are intended to "cover" the graph in some way

Definition of a Graph

- A set N of nodes, N is not empty
- A set N_{0} of initial nodes, N_{0} is not empty
- A set N_{f} of final nodes, N_{f} is not empty
- A set E of edges, each edge from one node to another
- $\left(n_{i}, n_{j}\right), i$ is predecessor, j is successor

Three Example Graphs

KAIST

Paths in Graphs

- Path : A sequence of nodes - $\left[n_{1}, n_{2}, \ldots, n_{M}\right]$
- Each pair of nodes is an edge
- Length : The number of edges
- A single node is a path of length 0
- Subpath : A subsequence of nodes in p is a subpath of p
- Reach (\underline{n}) : Subgraph that can be reached from n

Test Paths and SESEs

- Test Path : A path that starts at an initial node and ends at a final node
- Test paths represent execution of test cases
- Some test paths can be executed by many tests
- Some test paths cannot be executed by any tests
- SESE graphs : All test paths start at a single node and end at another node
- Single-entry, single-exit
- NO and Nf have exactly one node

Double-diamond graph Four test paths
[$0,1,3,4,6$]
[$0,1,3,5,6$]
[$0,2,3,4,6$]
[0, 2, 3, 5, 6]

Visiting and Touring

- Visit : A test path p visits node n if n is in p

A test path p visits edge e if e is in p

- Tour : A test path p tours subpath q if q is a subpath of p

```
Path [ 0, 1, 3, 4, 6 ]
Visits nodes 0, 1, 3, 4, }
Visits edges (0, 1), (1, 3), (3, 4), (4, 6)
Tours subpaths (0, 1, 3), (1, 3, 4), (3, 4, 6), (0, 1, 3, 4), (1, 3, 4, 6)
```


Tests and Test Paths

- path (t) : The test path executed by test t
- path (T) : The set of test paths executed by the set of tests T
- Each test executes one and only one test path
- A location in a graph (node or edge) can be reached from another location if there is a sequence of edges from the first location to the second
- Syntactic reach : A subpath exists in the graph
- Semantic reach : A test exists that can execute that subpath

Tests and Test Paths

Deterministic software - a test always executes the same test path

Non-deterministic software - a test can execute different test paths KAIST

Testing and Covering Graphs (2.2)

- We use graphs in testing as follows :
- Developing a model of the software as a graph
- Requiring tests to visit or tour specific sets of nodes, edges or subpaths
- Test Requirements (TR) : Describe properties of test paths
- Test Criterion : Rules that define test requirements
- Satisfaction : Given a set TR of test requirements for a criterion C, a set of tests T satisfies C on a graph if and only if for every test requirement in $T R$, there is a test path in path(T) that meets the test requirement tr
- Structural Coverage Criteria : Defined on a graph just in terms of nodes and edges
- Data Flow Coverage Criteria : Requires a graph to be annotated with references to variables

Node and Edge Coverage

- Edge coverage is slightly stronger than node coverage

Edge Coverage (EC) : TR contains each reachable path of length up to 1, inclusive, in G.

- The "length up to 1 " allows for graphs with one node and no edges
- NC and EC are only different when there is an edge and another subpath between a pair of nodes (as in an "ifelse" statement)

Node Coverage : $\operatorname{TR}=\{\mathbf{0 , 1 , 2}\}$
Test Path $=[0,1,2]$
Edge Coverage : $\operatorname{TR}=\{(0,1),(0,2),(1,2)\}$
Test Paths $=[0,1,2]$
[0,2]

Paths of Length 1 and 0

- A graph with only one node will not have any edges

- It may be boring, but formally, Edge Coverage needs to require Node Coverage on this graph
- Otherwise, Edge Coverage will not subsume Node Coverage
- So we define "length up to 1" instead of simply "length 1"
- We have the same issue with graphs that only have one edge - for Edge Pair Coverage ...

Covering Multiple Edges

- Edge-pair coverage requires pairs of edges, or subpaths of length 2

> | Edge-Pair Coverage (EPC) : TR contains each |
| :--- |
| reachable path of length up to 2, inclusive, in G. |

- The "length up to 2 " is used to include graphs that have less than 2 edges
- The logical extension is to require all paths ...

Complete Path Coverage (CPC) : TR contains all paths in G.

- Unfortunately, this is impossible if the graph has a loop, so a weak compromise is to make the tester decide which paths:

> | Specified Path Coverage (SPC) : TR contains a set S of |
| :--- |
| test paths, where S is supplied as a parameter. |

Structural Coverage Example

Loops in Graphs

- If a graph contains a loop, it has an infinite number of paths
- Thus, CPC is not feasible
- SPC is not satisfactory because the results are subjective and vary with the tester
- Attempts to "deal with" loops:
- 1970s : Execute cycles once ([4, 5, 4] in previous example, informal)
- 1980s : Execute each loop, exactly once (formalized)
- 1990s : Execute loops 0 times, once, more than once (informal description)
- 2000s : Prime paths

Simple Paths and Prime Paths

- Simple Path : A path from node n_{i} to n_{j} is simple, if no node appears more than once, except possibly the first and last nodes are the same
- No internal loops
- Includes all other subpaths
- A loop is a simple path
- Prime Path : A simple path that does not appear as a proper subpath of any other simple path

KAIST
Simple Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],
$[2,3,0,2],[3,0,1,3],[3,0,2,3],[1,3,0,2]$,
$[2,3,0,1],[0,3,3],[0,2,3],[1,3,0],[2,3,0]$,
$[3,0,1],[3,0,2],[0,1],[0,2],[1,3],[2,3],[3,0]$,
$[0],[1],[2],[3]$
Prime Paths : [0, 1, 3, 0$],[0,2,3,0],[1,3,0,1]$,
$[2,3,0,2],[3,0,1,3],[3,0,2,3],[1,3,0,2]$,
$[2,3,0,1]$

Prime Path Coverage

- A simple, elegant and finite criterion that requires loops to be executed as well as skipped

```
Prime Path Coverage (PPC) : TR contains each prime path in G.
```

- Will tour all paths of length $0,1, \ldots$
- That is, it subsumes node, edge, and edge-pair coverage

Prime Path Example

- The previous example has 38 simple paths
- Only nine prime paths

Simple \& Prime Path Example

Round Trips

- Round-Trip Path : A prime path that starts and ends at the same node

Simple Round Trip Coverage (SRTC) : TR contains at least one round-trip path for each reachable node in G that begins and ends a round-trip path.

Complete Round Trip Coverage (CRTC) : TR contains all round-trip paths for each reachable node in \mathbf{G}.

- These criteria omit nodes and edges that are not in round trips
- That is, they do not subsume edge-pair, edge, or node coverage

Touring, Sidetrips and Detours

- Prime paths do not have internal loops ... test paths might
- Tour : A test path p tours subpath q if q is a subpath of p
- Tour With Sidetrips : A test path p tours subpath q with sidetrips iff every edge in q is also in p in the same order
- The tour can include a sidetrip, as long as it comes back to the same node
- Tour With Detours : A test path p tours subpath q with detours iff every node in q is also in p in the same order
- The tour can include a detour from node ni, as long as it comes back to the prime path at a successor of ni

Sidetrips and Detours Example

Infeasible Test Requirements

- An infeasible test requirement cannot be satisfied
- Unreachable statement (dead code)
- A subpath that can only be executed if a contradiction occurs ($X>0$ and $X<0$)
- Most test criteria have some infeasible test requirements
- It is usually undecidable whether all test requirements are feasible
- When sidetrips are not allowed, many structural criteria have more infeasible test requirements
- However, always allowing sidetrips weakens the test criteria

Practical recommendation - Best Effort Touring
Satisfy as many test requirements as possible without sidetrips

- Allow sidetrips to try to satisfy unsatisfied test requirements

Data Flow Coverage

Data Flow Criteria

Goal: Try to ensure that values are computed and used correctly

- Definition : A location where a value for a variable is stored into me mory
- Use : A location where a variable's value is accessed
- def (n) or def (e) : The set of variables that are defined by node n o redge e
- use (n) or use (e) : The set of variables that are used by node n or edge e

$$
\begin{aligned}
& \text { Defs: } \text { def }(0)=\{X\} \\
& \text { def }(4)=\{Z\} \\
& \text { def }(5)=\{Z\} \\
& \text { Uses: use }(4)=\{X\} \\
& \text { use }(5)=\{X\}
\end{aligned}
$$

DU Pairs and DU Paths

- DU pair : A pair of locations $\left(l_{i}, l_{j}\right)$ such that a variable v is defined at l_{i} and used at l_{j}
- Def-clear : A path from I_{i} to I_{j} is def-clear with respect to variable v, if v is not given another value on any of the n odes or edges in the path
- Reach : If there is a def-clear path from I_{i} to I_{j} with respect to v, the def of v at l_{i} reaches the use at l_{j}
- du-path : A simple subpath that is def-clear with respect to v from a def of v to a use of v
- du $\left(n_{i}, n_{j}, v\right)$ - the set of du-paths from n_{i} to n_{j}
- du $\left(n_{i}, v\right)$ - the set of du-paths that start at n_{i}

Touring DU-Paths

- A test path p du-tours subpath d with respect to v if p tours d and the subpath taken is def-clear with respect to v
- Sidetrips can be used, just as with previous touring
- Three criteria
- Use every def
- Get to every use
- Follow all du-paths

Data Flow Test Criteria

- First, we make sure every def reaches a use

All-defs coverage (ADC) : For each set of du-paths $S=d u(n, v)$, TR contains at least one path d in S.

- Then we make sure that every def reaches all possible uses
All-uses coverage (AUC) : For each set of du-paths to uses $S=d u\left(n_{i}, n_{j}, v\right)$, TR contains at least one path d in S.
- Finally, we cover all the paths between defs and uses
All-du-paths coverage (ADUPC) : For each set $S=d u$
$\left(n_{i}, n_{j}, v\right)$, TR contains every path d in S.

Data Flow Testing Example

All-defs for X
$[\mathbf{0}, \mathbf{1}, \mathbf{3}, 4]$

All-uses for \boldsymbol{X}
$[\mathbf{0 , 1 , 3 , 4]}$
$[\mathbf{0 , 1 , 3 , 5]}$

All-du-paths for X
[$0,1,3,4$]
[$0,2,3,4$]
[$0,1,3,5$]
[0, 2, 3, 5]

Graph Coverage Criteria Subsumption

Assumptions for Data Flow Coverage
1.Every use is preceded by a def
2.Every def reaches at least one use
3.For every node with multiple outgoing edges, at least one variable is used on each out edge, and the same variables are usedroireach out edge.

Prime Path Coverage PPC

