Introduction to Software Testing Chapter 3.2 Logic Coverage

Paul Ammann & Jeff Offutt

Covering Logic Expressions

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Coverage Criteria Subsumption

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, !=</p>
 - boolean function calls
- Internal structure is created by logical operators
 - ¬ the *negation* operator
 - ∧ the *and* operator
 - ∨ the *or* operator
 - \rightarrow the *implication* operator
 - ⊕ the *exclusive or* operator
 - ← the *equivalence* operator
- A clause is a predicate with no logical operators

Examples

- $(a < b) \lor f (z) \land D \land (m >= n*o)$
- Four clauses:
 - (a < b) relational expression</p>
 - f (z) boolean-valued function
 - D boolean variable
 - (m >= n*o) relational expression
- Most predicates have few clauses
- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal
 - SQL queries

Testing and Covering Predicates

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses

Abbreviations:

- P is the set of predicates
- p is a single predicate in P
- C is the set of clauses in P
- c is a single clause in C

Predicate and Clause Coverage

 The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.

a.k.a. "decision coverage" in literature

- When predicates come from conditions on edges, this is equivalent to edge coverage
- PC does not evaluate all the clauses, so ...

Clause Coverage (CC): For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

Predicate Coverage Example

((a < b) ∨ D) ∧ (m >= n*o) predicate coverage

```
Predicate = true

a = 5, b = 10, D = true, m = 1, n = 1, o = 1

= (5 < 10) \lor true \land (1 >= 1*1)
```

= true ∨ true ∧ TRUE

= true

Predicate = false

```
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
= (10 < 5) \lor false \land (1 >= 1*1)
= false \lor false \land TRUE
= false
```


Clause Coverage Example

((a < b) ∨ D) ∧ (m >= n*o) Clause coverage

Problems with PC and CC

- PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation
- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false
 - \blacksquare Ex. $x > 3 \rightarrow x > 1$
 - Two test cases { x=4, x=0} satisfy CC but not PC
 - This is definitely <u>not</u> what we want!
- Condition/decision coverage is a hybrid metric composed by the union of CC and PC
 - Modified condition/decision coverage (MC/DC) checks every condition can affect decision
 - equivalent to condition/decision coverage for C/Java (w/ short circuit)
- The simplest solution is to test all combinations ...

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each p in P, TR has test requirements for the clauses in C_p to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	$((\mathbf{a} < \mathbf{b}) \lor \mathbf{D}) \land (\mathbf{m} >= \mathbf{n} * \mathbf{o})$
1	T	T	T	T
2	T	T	F	F
3	T	F	T	T
4	T	F	${f F}$	${f F}$
5	F	T	T	T
6	F	T	${f F}$	${f F}$
7	F	F	T	F
8	F	F	${f F}$	${f F}$

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the details right is hard
- What exactly does "independently" mean?
- The book presents this idea as "making clauses active"

Active Clauses

- Clause coverage has a weakness
 - The values do not always make a difference to a whole predicate
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

A clause C_i in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses C_j are such that changing C_i changes the value of p

This is considered to make the clause c_i active

Determining Predicates

$P = A \vee B$

if B = true, p is always true. so if B = false, A determines p.

if A = false, B determines p.

$P = A \wedge B$

if B = false, p is always false. so if B = true, A determines p. if A = true, B determines p.

- Goal: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in several criteria that have subtle, but very important, differences

Active Clause Coverage

Active Clause Coverage (ACC): For each p in P and each major clause c_i in C_p , choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

- This is a form of MCDC, which is required by the Federal Avionics Admini stration (FAA) for safety critical software
- <u>Ambiguity</u>: Do the minor clauses have to have the <u>same values</u> when the major clause is true and false?

Resolving the Ambiguity

```
p = a \lor (b \land c)
Major clause : a
a = true, b = false, c = true
a = false, b = false
c = false
```

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria :
 - Minor clauses do not need to be the same (GACC)
 - Minor clauses do need to be the same (RACC)
 - Minor clauses force the predicate to become both true and false (CACC)

General Active Clause Coverage

General Active Clause Coverage (GACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j do <u>not</u> need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = true)$ for all c_i OR $c_i(c_i = true) != c_i(c_i = true)$ for all c_i .

- It is possible to satisfy GACC without satisfying predicate coverage
 - Ex. $p = a \leftrightarrow b$,
 - {TT, FF} satisfies GACC, but not PC
- We want to cause predicates to be both true and false!

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_i(c_i = false)$ for all c_i .

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

The values chosen for the minor clauses c_j must <u>cause</u> p to <u>be</u> true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) != p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage

CACC and **RACC**

	a a	b	c	$a \wedge (b \vee c)$
1	T	T	T	T
2	T	T	F	T
3	T	F	T	T
5	F	T	T	\mathbf{F}
6	F	T	F	$\int \mathbf{F}$
7	F	F	T	$\overline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$

	a a	b	c	$a \wedge (b \vee c)$
1	Т	T	T	T
5	F	T	T	${f F}$
2	Т	T	F	T
6	F	T	\mathbf{F}	${f F}$
3	T	F	T	, T
7	F	F	T	$ \mathbf{F}$

major clause

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

major clause

RACC can only be satisfied by one of the three pairs above

Inactive Clause Coverage

- The active clause coverage criteria ensure that "major" clauses do affect the predicates
- Inactive clause coverage takes the opposite approach major clauses do not affect the predicates

Inactive Clause Coverage (ICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i does not determine p. TR has <u>four</u> requirements for each c_i :

- (1) c_i evaluates to true with p true
- (2) c_i evaluates to false with p true
- (3) c_i evaluates to true with p false, and
- (4) c_i evaluates to false with p false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - c_i does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) \neq c_j(c_i = false)$ for all c_j .

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_i(c_i = false)$ for all c_i .

Logic Coverage Criteria Subsumption

Making Clauses Determine a Predicate

- Finding values for minor clauses C_i is easy for simple predicates
- But how to find values for more complicated predicates?
- Definitional approach:
 - $\rho_{c=true}$ is predicate p with every occurrence of c replaced by true
 - Arr $p_{c=false}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

After solving, p_C describes exactly the values needed for C to determine p

Examples

```
p = a \lor b
p_a = p_{a=true} \oplus p_{a=false}
= (true \lor b) XOR (false \lor b)
= true XOR b
= \neg b
= | b |
```

```
p = a \wedge b
p_a = p_{a=true} \oplus p_{a=false}
= (true \wedge b) \oplus (false \wedge b)
= b \oplus false
= b
```

```
p_{a} = p_{a=true} \oplus p_{a=false}
= (true \lor (b \land c)) \oplus (false \lor (b \land c))
= true \oplus (b \land c)
= \neg (b \land c)
= \neg b \lor \neg c
```

- "NOT b \(\times \) NOT c" means either b or c can be false
- RACC requires the same choice for both values of a, CACC KAIST does not

A More Subtle Example

```
p = (a \land b) \lor (a \land \neg b)
p_{a} = p_{a=true} \oplus p_{a=false}
= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b))
= (b \lor \neg b) \oplus false
= true \oplus false
= true
```

```
p = (a \land b) \lor (a \land \neg b)
p_b = p_{b=true} \oplus p_{b=false}
= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))
= (a \lor false) \oplus (false \lor a)
= a \oplus a
= false
```

- a always determines the value of this predicate
- b never determines the value b is irrelevant!

Infeasible Test Requirements

Consider the predicate:

$$(a > b \land b > c) \lor c > a$$

- (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable

Example

$$p = a \wedge (\neg b \vee c)$$

	а	b	С	р	p _a	p _b	p _c
1	Т	Т	Т	Т	Т	F	Т
2	Т	Τ	F	F	F	Т	Т
3	Т	F	Т	Т	Т	F	F
4	Т	F	F	Т	Т	Τ	F
5	F	Т	Т	F	F	F	F
6	F	Τ	F	F	F	F	F
7	F	F	Т	F	Т	F	F
8	F	F	F	F	Т	F	F

- Conditions under which each of the clauses determines r

 - p_b: a ∧¬c
 - _ p_c: a ∧ b

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses
- Control software often has many complicated predicates, with lots of clauses
 - Question ... why don't complexity metrics count the number of clauses in predicates?

