Introduction to Software Testing Chapter 3.2 Logic Coverage

Paul Ammann \& Jeff Offutt

Covering Logic Expressions

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
- Decisions in programs
- FSMs and statecharts
- Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Coverage Criteria Subsumption

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
- boolean variables
- non-boolean variables that contain >, <, ==, >=, <=, !=
- boolean function calls
- Internal structure is created by logical operators
- \neg - the negation operator
- \wedge - the and operator
- \vee - the or operator
- \rightarrow - the implication operator
$\square \oplus$ - the exclusive or operator
- \leftrightarrow - the equivalence operator
- A clause is a predicate with no logical operators

Examples

- ($a<b) \vee f(z) \wedge D \wedge\left(m>=n^{*} 0\right)$
- Four clauses:
- ($\mathrm{a}<\mathrm{b}$) - relational expression
- $f(z)$ - boolean-valued function
- D - boolean variable
- (m >= $n^{*} 0$) - relational expression
- Most predicates have few clauses
- Sources of predicates
- Decisions in programs
- Guards in finite state machines
- Decisions in UML activity graphs
- Requirements, both formal and informal
- SQL queries

Testing and Covering Predicates

- We use predicates in testing as follows :
- Developing a model of the software as one or more predicates
- Requiring tests to satisfy some combination of clauses
- Abbreviations:
- P is the set of predicates
- p is a single predicate in P
- C is the set of clauses in P
- C_{p} is the set of clauses in predicate p
- c is a single clause in C

Predicate and Clause Coverage

- The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false
> : For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.
a.k.a. "decision coverage" in literature
- When predicates come from conditions on edges, this is equivalent to edge coverage
- PC does not evaluate all the clauses, so ...
\square
Coverage (CC) : For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

KAIST a.k.a. "condition coverage" in literature

Predicate Coverage Example $((a<b) \vee D) \wedge(m>=n *)$

 predicate coveragePredicate = true
$a=5, b=10, D=$ true, $m=1, n=1, o=1$
$=(5<10) \vee$ true $\wedge(1>=1 * 1)$
$=$ true \vee true \wedge TRUE
= true

\quad| Predicate $=$ false |
| :--- |
| $a=10, b=5, D=$ false, $m=1, n=1, o=1$ |
| $=(10<5) \vee$ false $\wedge(1>=1 * 1)$ |
| $=$ false \vee false $\wedge T R U E$ |
| $=$ false |

Clause Coverage Example $((a<b) \vee D) \wedge(m>=n *)$

Clause coverage

Problems with PC and CC

- PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation
- CC does not always ensure PC
- That is, we can satisfy CC without causing the predicate to be both true and false

Ex. $x>3 \rightarrow x>1$

- Two test cases $\{x=4, x=0\}$ satisfy $C C$ but not $P C$
- This is definitely not what we want !
- Condition/decision coverage is a hybrid metric composed by the union of CC and PC
- Modified condition/decision coverage (MC/DC) checks every condition can affect decision
- equivalent to condition/decision coverage for C/Java (w/ short circuit)
- The simplest solution is to test all combinations ...

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage
Com requirements for the clauses in C_{p} to evaluate to
test req
each possible combination of truth values.

	$\mathbf{a}<\mathbf{b}$	D	$\mathrm{m}>=\mathbf{n}^{*} \mathbf{0}$	$(\mathbf{(a < b}) \vee \mathrm{D}) \wedge\left(\mathrm{m}>=\mathbf{n}^{*} \mathbf{0}\right)$
$\mathbf{1}$	T	T	T	T
2	T	T	F	F
3	T	F	T	T
4	T	F	F	F
5	F	T	T	T
$\mathbf{6}$	F	T	F	F
7	F	F	T	F
$\mathbf{8}$	F	F	F	F

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
- 2^{N} tests, where N is the number of clauses
- Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions - some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the details right is hard
- What exactly does "independently" mean?
- The book presents this idea as "making clauses active"

Active Clauses

- Clause coverage has a weakness
- The values do not always make a difference to a whole predicate
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination :

A clause $\boldsymbol{C}_{\boldsymbol{i}}$ in predicate \boldsymbol{p}, called the major clause, determines \boldsymbol{p} if and only if the values of the
remaining minor clauses $\boldsymbol{C}_{\boldsymbol{j}}$ are such that changing C_{i} changes the value of p

- This is considered to make the clause c_{i} active

Determining Predicates

$$
\begin{aligned}
& \quad \mathrm{P}=\mathrm{A} \vee \mathrm{~B} \\
& \text { if } B=\text { true, } p \text { is always true. } \\
& \text { so if } B=\text { false, } A \text { determines } p \text {. } \\
& \text { if } A=\text { false, } B \text { determines } p .
\end{aligned}
$$

- Goal : Find tests for each clause when the clause determines the value of the predicate
- This is formalized in several criteria that have subtle, but very important, differences

KAIST

Active Clause Coverage

Active c_{i} in C_{p}, choose minor clauses $c_{j} ; j!=i$, so that c_{i} determines
clauser
p. TR has two requirements for each $c_{i}: c_{i}$ evaluates to true and c_{i}
evaluates to false.

- This is a form of MCDC, which is required by the Federal Avionics Admini stration (FAA) for safety critical software
- Ambiguity: Do the minor clauses have to have the same values when the major clause is true and false?

KAIST

Resolving the Ambiguity

$\quad \mathrm{p}=\mathrm{a} \vee(\mathrm{b} \wedge \mathrm{c})$
Major clause : a
$\mathrm{a}=$ true, $\mathrm{b}=$ false, $\mathrm{c}=$ true
$\mathrm{a}=$ false, $\mathrm{b}=$ false $\mathrm{c}=$ false

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria :
- Minor clauses do not need to be the same (GACC)
- Minor clauses do need to be the same (RACC)
- Minor clauses force the predicate to become both true and false (CACC)

KAIST

General Active Clause Coverage

Generan : For each p in P and
each major clause c_{i} in $C p$, choose minor clauses $c_{j} j!=i$, so that
c_{i} determines p. TR has two requirements for each $c_{i}: c_{i}$ evaluates
to true and c_{i} evaluates to false.
The values chosen for the minor clauses c_{j} do not need to be the
same when c_{i} is true as when c_{i} is false, that is, $c_{j}\left(c_{i}=\right.$ true $)=c_{j}\left(c_{i}=\right.$
false) for all c_{j} OR $c_{j}\left(c_{i}=\right.$ true) $!=c_{j}\left(c_{i}=\right.$ false) for all c_{j}.

- It is possible to satisfy GACC without satisfying predicate coverage
- Ex. $\mathrm{p}=\mathrm{a} \leftrightarrow \mathrm{b}$,
\{TT, FF\} satisfies GACC, but not PC
- We want to cause predicates to be both true and false!

Restricted Active Clause Coverage

> : For each p in P and each major clause c_{i} in $C p$, choose minor clauses $c_{j 1} j!=i$, so that c_{i} determines p. TR has two requirements for each $c_{i}: c_{i}$ evaluates to true and c_{i} evaluates to false.

> The values chosen for the minor clauses c_{j} must be the same when c_{i} is true as when c_{i} is false, that is, it is required that $c_{j}\left(c_{i}=\right.$ true $)=c_{j}\left(c_{i}=\right.$ false $)$ for all c_{j}.

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

KAIST

Correlated Active Clause Coverage

Correlan : For each p in P and
each major clause ci in $C p$, choose minor clauses $c_{j}, j!=i$, so that
c_{i} determines p. TR has two requirements for each $c_{i}: c_{i}$ evaluates
to true and c_{i} evaluates to false.
The values chosen for the minor clauses c_{j} must cause p to be
true for one value of the major clause c_{i} and false for the other,
that is, it is required that $p\left(c_{i}=\right.$ true) $!=p\left(c_{i}=\right.$ false).
A more recent interpretation
Implicitly allows minor clauses to have different values
Explicitly satisfies (subsumes) predicate coverage

KAIST

CACC and RACC

	a	b	c	$\mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})$
1	a		T	T
1	T	T	T	
2	T	T	F	T
3	T	F	T	T
5	F	T	T	F
6	F	T	F	F
7	F	F	T	F

		a	b	c
	a	$\mathrm{a} \wedge(\mathrm{b} \vee \mathrm{c})$		
1	T	T	T	T
5	F	T	T	F
2	T	T	F	T
6	F	T	F	F
3	T	F	T	T
7	F	F	T	F

major
clause

CACC can be satisfied by choosing any of rows 1, 2, 3
AND any of rows 5, 6, 7 - a total of nine pairs

Inactive Clause Coverage

- The active clause coverage criteria ensure that "major" clauses do affect the predicates
- Inactive clause coverage takes the opposite approach - major clauses do not affect the predicates

KAIST

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
- c_{i} does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

KAIST

Logic Coverage Criteria Subsumption

Making Clauses Determine a Predicate

- Finding values for minor clauses C_{j} is easy for simple predicates
- But how to find values for more complicated predicates?
- Definitional approach:
- $p_{c=t r u e}$ is predicate p with every occurrence of c replaced by true
- $p_{c=f a l s e}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{C=\text { true }}$ and $p_{C=f a l s e}$ with exclusive $O R$

$$
p_{c}=p_{c=t r u e} \oplus p_{c=\text { false }}
$$

- After solving, p_{C} describes exactly the values needed for C to deter mine p

Examples

```
            \(p=a \vee b\)
\(p_{a}=p_{a=\text { true }} \oplus p_{a=\text { false }}\)
    \(=(\) true \(\vee b)\) XOR (false \(\vee b)\)
    = true XOR b
    = \(\quad\) b
```

	$\quad \frac{p=a \wedge b}{}$
p_{a}	$=p_{a=t r u e} \oplus p_{a=\text { false }}$
	$=($ true $\wedge b) \oplus($ false $\wedge b)$
	$=b \oplus$ false
	$=b$

 = b
    ```
p=a\vee(b\wedgec)
pa}=\mp@subsup{p}{a=true}{}\oplus\mp@subsup{p}{a=false}{
    = (true \vee (b ^c)) }\oplus(\mathrm{ false }\vee(b\wedgec)
    = true }\oplus(b\wedgec
    = ᄀ (b ^c)
    = ᄀ b \vee ᄀc
```

- "NOT b \vee NOT c " means either b or \boldsymbol{c} can be false
- RACC requires the same choice for both values of a, CACC KAIST does not

A More Subtle Example

```
\(p_{\mathrm{a}}=\mathrm{p}_{\mathrm{a}=\text { true }} \oplus \mathrm{p}_{\mathrm{a}=\text { false }}\)
    \(=((\) true \(\wedge \mathbf{b}) \vee(\) true \(\wedge \neg \mathbf{b})) \oplus((\) false \(\wedge \mathbf{b}) \vee(\) false \(\wedge \neg \mathbf{b}))\)
    \(=(b \vee \neg b) \oplus\) false
    = true \(\oplus\) false
    = true
```

$$
p=(a \wedge b) \vee(a \wedge \neg b)
$$

$$
\mathrm{p}_{\mathrm{b}}=\mathrm{p}_{\mathrm{b}=\text { true }} \oplus \mathrm{p}_{\mathrm{b}=\text { false }}
$$

$$
=((a \wedge \text { true }) \vee(a \wedge \neg \text { true })) \oplus((a \wedge \text { false }) \vee(a \wedge \neg \text { false }))
$$

$$
=(a \vee \text { false }) \oplus(\text { false } \vee a)
$$

$$
=\mathbf{a} \oplus \mathbf{a}
$$

= false

- a always determines the value of this predicate
- \boldsymbol{b} never determines the value - \boldsymbol{b} is irrelevant !

KAIST

Infeasible Test Requirements

- Consider the predicate:

$$
(a>b \wedge b>c) \vee c>a
$$

- $(a>b)=$ true $(b>c)=$ true, $(c>a)=$ true is infeasible
- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable

Example

$$
p=a \wedge(\neg b \vee c)
$$

| | a | b | c | p | p_{a} | p_{b} | p_{c} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | T | T | T | F | T |
| 2 | T | T | F | F | F | T | T |
| 3 | T | F | T | T | T | F | F |
| 4 | T | F | F | T | T | T | F |
| 5 | F | T | T | F | F | F | F |
| 6 | F | T | F | F | F | F | F |
| 7 | F | F | T | F | T | F | F |
| 8 | F | F | F | F | T | F | F |

- Conditions under which ear of the clauses determines γ
- $\mathrm{p}_{\mathrm{a}}:(\neg \mathrm{b} \vee \mathrm{c})$
- $p_{b}: a \wedge \neg C$
- $p_{c}: a \wedge b$

KAIST

Logic Coverage Summary

- Predicates are often very simple-in practice, most have less t han 3 clauses
- In fact, most predicates only have one clause!
- With only clause, PC is enough
- With 2 or 3 clauses, CoC is practical
- Advantages of ACC and ICC criteria significant for large predicates
- CoC is impractical for predicates with many clauses
- Control software often has many complicated predicates, with lots of clauses
- Question ... why don't complexity metrics count the number of clauses in predicates?

