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OneNAND — Flash Memory Devices

In 2007, Samsung requested to debug the device driver for the OneNAND™
flash memory

We reviewed the requirement specifications, the design documents, and C
code to identify code-level properties to check.

Then, we applied CBMC (C Bounded Model Checker) to check the properties

— Found several bugs

— Provided high confidence in multi-sector read operation through exhaustive exploratlon

Moonzoo Kim et
Unit Testing of Flash Memory Device Driver through
2/20 2 SAT-based Model Checker al. Provable SW KAIST

[N PN



Overview

Background

— Logical-to-physical sector translation

— Overview of the Unified Storage Platform (USP)

— SAT-based model checking technique

|dentification of properties to check

— High-level requirements

— Code-level properties

Unit analysis result through CBMC

— Prioritized read operation (PRO)@ Demand Paging Manager (DPM)
— Semaphore matching (SM)@ Block Management Layer (BML)

— Semaphore exception handling (SEH)@ STL~BML

— Multi-sector read operation (MSR) @ Sector Translation Layer (STL)

Lessons learned and conclusion
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Logical to Physical Sector Mapping
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e |n flash memory, logical
data are distributed
over physical sectors.



Overview of the OneNAND” Flash Memory

e Characteristics of OneNAND® flash

— Each memory cell can be written 7 Source:
. . App3 Software Center
limited number of times only , of Samsung

Electronics ‘06

* Logical-to-physical sector mapping

e Bad block management

Unified
Storage
Platform

* Wear-leveling

— XIP by emulating NOR interface
through demand-paging scherl '08 Spin

« Multiple processes access thd_ Workshop >
concurrently 0S

* Urgent read operation should have a Adapt-
higher priority ation

* Synchronization among processes is Module
crucial Low Level (LLD

Device Drive
— Performance enhancement R

e Multi-sector read/write
 Asynchronous operations OneNAND  Flash Memory Devices

e Deferred operation result check
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C Bounded Model Checker (CBMC)

 Handles function calls using inlining
 Unwinds the loops a fixed number of times (bounded MC)

— A user has to know a upper bound of each loop

* Loops often have clear upper bounds
* We can still get debugging result without upper bounds

e Specifies constraints to describe an environment of the
target program, which can model non-deterministic user

inouts. or multiple scenarios
) A4 | |||M|L|rl|\.- ST 11Ul IV I

IIVULJ

— Ex. _ CPROVER assume(0<=nDev && nDev<=7)

— Ex.__CPROVER_assume( SHDC.nPhySctsPerUnit ==
SHPC.nBlksPerUnit * SHVC.nPgsPerBlk * SHVC.nSctsPerPg)

 Checks properties by assertions
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Project Overview

 The goal of the project

— To check whether USP conforms to the given high-
level requirements

 we needed to identify the code-level properties to check
from the given high-level requirements

e Atop-down approach to identify the code level
properties from high-level requirements

— USP has a set of elaborated design documents
e Software requirement specification (SRS)
e Architecture design specification (ADS)

e Detailed design specification (DDS)
— DPM, STL, BML, and LLD
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Three High-level Requirements in SRS

e SRS specifies 13 functional requirements, 3 of which
have “very high” priorities
— Support prioritized read operation

 To minimize the fault latency, USP should serve a read request from
DPM prior to generic requests from a file system.

e This prioritized read request can preempt a generic |/O operation
and the preempted operation can be resumed later.

— Concurrency handling

e BML and LLD should avoid a race condition or deadlock through
synchronization mechanisms such as semaphores and locks.

— Manage sectors

e STL provides logical-to-physical mapping, i.e. multiple logical

sectors written over the distributed physical sectors should be read
back correctly.
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Top-down Approach to Identify Code-level Property

SRS

ADS

Multi-sector
read

Prioritized
read

Concurrency
handling

DDS

Code

Page fault
handling while a
device is being
read

Page fault handling
while a device is
being programmed

> . Y
/ : “ ‘>\
L’ ~ Check “Step 14. heck “Step
wait until the 18. Store”the
device is ready ” . statu\s\
e Is the status RREEY
. really stored?
\_ 54 y ; )
e $ <
At line 494 of PriRead() in LLD.c
L assert(bNeedToSave->saved) )

Legend

Spec. in the
design docs

User defined
property to check

Total 43 code-level properties
are identified
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Page Fault Page Cache

MMU Handler Management BML LLD ]: OneNAND
- = — Devige
[ issue page fault pkception ”
|: 2} request a free frame in[page cache
-
If there is a free frame,__ 3: fipfl a free frame
go to Stepb6.
4: find a victim page

5: ppge out the victim

—

6: return the free ff{gm

Jdge

/. find a location Where the page is storefl in OneNAND deyide

|

8: request fead operation
4 % fequest read operation
i 10: Set the|Areempted flag
P—

11: request] the ready/busyistatus

12: return the ready/busy $tatus
In case of busy status Clamity ’
becausg of program ~he 13 check iff the device is r¢gdy
operation Po— i

14: wait until the device is I[eady

i

b NeedToSave Iflag
— i

1
he operation status

15: check t|

16: request

17: return theéoperation stafus

I 18: store tHd status I

A sequence diagram of page fault handling
while a device is being programmed in LLD DDS
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Results of Unit Testings

e Prioritized read operation

— Detected a bug of not saving the status of suspended
erase operation

e Concurrency handling
— Confirmed that the BML semaphore was used correctly
— Detected a bug of ignoring BML semaphore exceptions
e Multi-sector read operation (MSR)

— Provided high assurance on the correctness of MSR, since
no violation was detected even after exhaustive analysis
(at least with a small number of physical units(~10))
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A Bug in PriRead()

374: VOID PriRead(Read(UINT32 nDev, UINT32 nPbn, UINT32 nPgOffset) {

416;  if (bEraseCmd==FALSE32) && (pstInfo->bNeedToSave==TRUE32)) {

417: pstinfo->nSavedStatus = GET_ONLD_CTRL_STAT(pstReg, ALL_STATE);
418: pstinfo->bNeedToSave = FALSE32;
4109: saved=1; // added for verification purpose }

424:  assert(!(pstinfo->bNeedToSave) || saved);

 We added a flag saved to 0l:..

n whether th f th 02:State 14 file LLD.c line 408 function PriRead thread 0
denote ethert _e St_atus of the 03: LLD::PriRead::1::bEraseCmd=1
preempted operation is saved 04:State 15 file LLD.c line 412 function PriRead thread 0
. 05: LLD::PriRead::1::1::2:nWaitingTimeOut=...
* CBMC_deteCted_the given 06:State 17 file LLD.c line 412 function PriRead thread 0
assertion was violated when an 07: LLD::PriRead::1::1::2:nWaitingTimeQut=...

i 08....
erase operation was preempted 09iolated property.
— It takes 8 seconds and 325 Mb on 10: file LLD.c line 424 function PriRead
the 3Ghz Xeon machine 11: assertion !(_Bool)pstIinfo->bNeedToSave || (_Bool)saved
—  CBMC 2.6 with MiniSAT 1.1.4 12:VERIFICATION FAILED

Moonzoo Kim et

al. Provable SW KAIST

[N PN

Unit Testing of Flash Memory Device Driver through

11/20 a SAT-based Model Checker



BML Semaphore Usage

e The standard requirements for a binary semaphore
— Semaphore acquire should be followed by a semaphore release

— Every function should return with a semaphore released
* unless the semaphore operation creates an exception error.

 There exist 14 BML functions that use the BML semaphore.

— We inserted an smp to indicate the status of the semaphore

— and simple codes to decrease/increase smp at the
corresponding semaphore operation.

e CBMC concluded that all 14 BML functions satisfied the
above two properties.

— Consumes 10 seconds and 300 megabytes of memory on
average to analyze each BML function
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BML Semaphore Exception Handling (1/2)

Topmost STL
functions
AT OpeN— SM_Activate f—
T |
\ = Bug '.
STLRead [N ey \A_\;H/_{__:_M_amtamWearLevel h _ etected [ BML_GetVolinfo l,l'ul
— — H
[STLwite |-} A — [ BMLRead ||
1 SM_WriteSectors ¥ KeepBoundsOfDept _PartialMerge == _Constructsam _Loadsam HY _GetSInfo >'/ | et
STLAWrte 4~ ‘| T\1 - e /H J________.---g = }_ / { BML_ReplaceBIk | OAM AcquireSM_ |
N L /
- - BML_StorePIExt [
ST Delete ] Compacion T [ Woeae | [ BML_StorePiExt J)
/| Delete H SM_MarkDeletion |—— BML_IOCH! ||
|
|

e The BML semaphore operation might cause an exception depending
on the hardware status.

e Once such BML semaphore exception occurs, that exception should
be propagated to the topmost STL functions to reset the file system

— We checked this property by the following assert statement inserted before the
return statement of the topmost STL functions:

— assert(!(SMerr==1)| | nErr==STL CRITICAL ERR)

Moonzoo Kim et
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BML Semaphore Exception Handling (2/2)

Topmost STL
functions

£ OpeN— L SMActvale |
— \
|

\ e Bug .
STLRead [\ sy Feadsecions \l\;ﬁi_:}ﬂ_alrita|nWearLevel L . detocted [ BML_GetVolinfo L'I,
STL Write |- A T\ [ BMCRead |
- — - / \ - _ - \
— | == f e et
— 1 = -| SM_WriteSectors ] _KeepBoundsOfDept v _F’arnei_l':{e_rge = _ConstructSam | _LoadSam (_GetSinfo )1 BV ReplacoBlk 1 OAVLAcquiasi |
STL_AWTrite Pz i J.’ it S
N\ S BML_StorePIExt |
STL Delete |, [ _Compaction | [ VN Greate | [ BuL_StorePiEXt i
/| Delete H SM_MarkDelstion |—— BML_IOCH I,I'
|

e CBMC analyzed a call graph of each of the topmost STL functions and
detected that BML semaphore exception might not propagate due to
bug at GetSInfo()

* The bug was detected when loop bound was set 2 with ignoring loop
unwinding assertion.

— Memory overflow occurred with the loop bound 3

e For STL_Write(), this verification task consumed 616 megabytes of
memory in 97 seconds

— Each call sequence is around 1000 lines long on average.

Unit Testing of Flash Memory Device Driver through
a SAT-based Model Checker
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Multi-sector Read Operation (MSR)

SAMO~SAM4  PUO~PU4

Sector 0
Sector 1
Sector 2
Sector 3

SAMO~SAM4 PUO~PU4

1 0 E 3 3| B
1 1| AB F| O D
2 C 3 =
3 D 1 AC| E
a) A distribution of b) Another distribution of

"ABCDEF"

"ABCDEF"

MSR reads adjacent multiple physical sectors once in order to
improve read speed

— MSRis 157 lines long, but highly complex due to its 4 level loops
We built a small test environment for MSR

— The test environment contains only upto 10 physical units

— The test environment should follow constraints, which are described by

_CPROVER_assume(Boolean exp) statement
 SAM tables and PUs should correspond each other
* For each logical sector, at least one physical sector that has the same value exists
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ronment Model

Env

e Environment model creation

— The environment of MSR (i.e., PUs and SAMs configurations) can be described by
invariant rules. Some of them are

1. One PU is mapped to at most one LU
2. Valid correspondence between SAMs and PUs:

If the i th LS is written in the k th sector of the j th PU, then the i th offset of
the j th SAM is valid and indicates the k’'th PS,

Ex> 3 LS (‘C’)is in the 3 sector of the 2" PU, then SAM1[2] ==
i=2 k=2 j=1
3. For one LS, there exists only one PS that contains the value of the LS:
The PS number of the j th LS must be written in only one of the (i mod 4) th
offsets of the SAM tables for the PUs mapped to the corresponding LU.

SAMO~SAM4 PUO~PU4

Vi, j. k (LS[i] = PU[j].sect[k] — (SAMT[j].valid[i mod m] = true

Sector 0
& SAM [jl.of fset[i modm] =k 1 0 E
e - o Sector 1 | |1 1| AB F
& Vp.(SAM [p].valid[i mod m] = false)

Sector 2 2 C
where p # j and PU[p] is mapped t“L—Jm LU)) Soctor 3 3 D




# of possible cases

1.00E+14
1.00E+13
1.00E+12
1.00E+11
1.00E+10
1.00E+09
1.00E+08
1.00E+07
1.00E+06
1.00E+05
1.00E+04
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n—1
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=1

Possible cases

A nu}nober of physica:ll15units 20

Exponential Increase of Distribution Cases



MSR Model Checking Results

* Verification of MSR by using NuSMYV, Spin, and
CBMC

— NuSMV: BDD-based symbolic model checker
— Spin: Explicit model checker
— CBMC: C-bounded model checker
 The requirement property is to check
— after_ MSR -> ( Vi. logical_sectors[i] == buf]i])
 We compared these three model checkers
empirically



Excerpts of the SMV Model

MODULE main init(buf[0]):=0;
-- if( pBuf==0 && 0 < nScts)

-~ Variable declaration -- buf[0]= PU[PU _id].sect[nFirstOffset]

VAR next(buf[0]):
SAM  :array 0..4 of sam_type; case after_fourth_do : .
PU . array 0..4 of PU_type; case pBuf = 0 & 0 < nScts: --i=0
buf :array 0..4 of 0..5; case _ _
nScts - 0.5 PU_id=0 & nFirstOffset=0: PU[0].sect[0];
B PU_id=0 & nFirstOffset=1: PU[0].sect[1];
SPEC PU _id=0 & nFirstOffset=2: PU[0].sect[2];

_ PU id=0 & nFirstOffset=3: PU[0].sect[3];
INVARSPEC (after_first_do ->

PU[O].sect[0]=1 &
PU[O].sect[1]=2 &
PU[O].sect[2]=3 &
PU[O].sect[3]=4 &
PUI3]sect[0]=5) init(buf{11):=0;
next(buf[1]):= ...

PU_id=4 & nFirstOffset=3 : PU[4].sect[3];
esac;
esac;

19



Verification Performance of NuSMV

100000 - 600

] 500

| Alength / Alength
10000 - of data _m of data
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400
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1000 -=7 | | &0 —~ il
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| %‘/ 100 o —
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(a) Time consumption (b) Memory consumption

e \Verification was performed on the machine equipped with Xeon5160 (3Ghz,
32Gbyte Memory), 64 bit Fedora Linux 7, NuSMV 2.4.3
e The requirement property was proved correct for all the experiments (i.e., MSR is
correct in this small model)
e For 7 sectors long data that are distributed over 7 PUs consumes more than 11
hours while consuming only 550 mb memory
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Excerpts o

active proctype SM_ReadSectors() {

byte buf[NUM _LS USED];

byte nScts;

byte nFirstOffset;

byte nNumOfScts=NUM LS USED;
byte nReadScts=nNumOfScts;
byte nSamldx;

do /* 1047: while (nNumOfScts >0) { */

;> NNumOfScts >0 ->
PU_id = lui[nLun];
if /* nReadScts = ... ¥/
:: (SECT_PER_U-nSamldx)> nNumOfScts ->
nReadScts = nNumOfScts;
:: else->nReadScts =SECT_PER_U- nSamldx;
fi;
NNumOfScts = nNumOfScts - nReadScts;
/* line 1068: while (nReadScts > 0) */
:: (nReadScts > 0) -> PU_id = lui[nLun];

nFirstOffset=255;
nScts=1; nReadScts--;

21

/* line 1075; do {.. */
o true;
if /* line 1077: if(pstCurrent->pSam[nSamlIdx]...*/

= SAM[PU _id].valid[nSamIdx]-> nFirstOffset =
SAM[PU id].offset[nSamIdx];nSamldx+ +;

do /* line 1084:while (nReadScts > 0) { ..} */
. (nReadScts > 0) ->
if
:FirstOffset+nScts==
SAM[PU_id].offset[nSamlIdx] ->
nScts+ +;nReadScts--;nSamldx+ +;
= else-> break;
fi;
= else->break;
od;

BML_MRead(PU_id,nFirstOffset,nScts,pBuf);
break;

;o else;

fi;

if /*line 1112: } while ( PU[PU_id].nil != true) */

. PU[PU_id].nil -> break;

;o else;

fi;

PU id++;



Verification Performance of Spin
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e The requirement property was satisfied
 The data abstraction technique shows significant performance improvement
upto 78% of memory reduction and 35% time reduction (for 5 logical sectors
data)

(b) Memory consumption

# of physical units
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I\/Indpllng hv CBMC

5 ¥V 8 W Wil W § 8 8§ 8§ - == 8§ VvV 8

e CBMC does not require an explicit target model
creation
 An environment for MSR was specified using assume

statements and the environment model was similar to
the environment model in NuSMV

 For the loop bounds, we can get valid upper bounds
from the loop structure and the environment setting
— The outermost loop: L times (L is a # of LUs)
— The 2" outermost loop: 4 times (one LU contalnzs 4 LS ’s)
— The 3" outermost loop: M times SAMO~SAMA4  PUO~PUA4
(M is a # of PUs) Sector 0 11| | |0 E
— The innermost loop: 4 times sectord| 1L | 1A

B
. , Sector 2 2 C
(one PU contains 4 PS’s) coctor3 | 1 B D

F




Verification Performance of CBMC
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e Exponential increase in both time and memory. However, the slope is much
lower than those of NuSMV and Spin, which makes CBMC perform better for

large problems
e A problem of 10 PUs and 8 LS’s has 8.6x10° variables and 2.9 x 10° clauses.
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Conclusion

e We successfully applied CBMC to detect hidden bugs in
the device driver for Samsung’s OneNAND flash memory

— Also, we established confidence in the correctness of the
complex MSR

e Lessons learned

— Software model checker as an effective unit testing tool
e CBMC took modest amount of memory and time to detect bugs in USP
e Exhaustive analysis can detect hidden bugs
— Advantages of a SAT-based model checker
e Analysis capability of whole ANSI-C
* No abstract model required

 We believe that a SAT-based model checker can be utilized
effectively as a unit testing tool to complement
conventional testing
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