CS156: The Calculus of Computation Zohar Manna Autumn 2008

Chapter 3: First-Order Theories

イロト 不得 とくほ とくほ とうほう

Page 1 of 31

First-Order Theories I

First-order theory T consists of

- Signature Σ_T set of constant, function, and predicate symbols
- Set of <u>axioms</u> A_T set of <u>closed</u> (no free variables)
 Σ_T-formulae

A Σ_{T} -formula is a formula constructed of constants, functions, and predicate symbols from Σ_{T} , and variables, logical connectives, and quantifiers.

The symbols of Σ_T are just symbols without prior meaning — the axioms of T provide their meaning.

First-Order Theories II

A Σ_T -formula F is <u>valid in theory T (T-valid, also $T \models F$), iff every interpretation I that satisfies the axioms of T, i.e. $I \models A$ for every $A \in A_T$ (T-interpretation) also satisfies F,</u>

i.e. $I \models F$

A Σ_T -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F_1 and F_2 are equivalent in T (T-equivalent), iff $T \models F_1 \leftrightarrow F_2$, i.e. if for every T-interpretation $I, I \models F_1$ iff $I \models F_2$

Note:

- $I \models F$ stands for "F true under interpretation I"
- $T \models F$ stands for "F is valid in theory T"

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is <u>decidable</u> if $T \models F$ (T-validity) is decidable for every Σ_T -formula F;

i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid.

A fragment of T is <u>decidable</u> if $T \models F$ is decidable for every Σ_T -formula F obeying the syntactic restriction.

Theory of Equality T_E I

Signature:

$$\Sigma_{=}$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

consists of

- =, a binary predicate, <u>interpreted</u> with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_E

1. $\forall x. \ x = x$ (reflexivity) 2. $\forall x, y. \ x = y \rightarrow y = x$ (symmetry) 3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity) 4. for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1, \dots, x_n, y_1, \dots, y_n$. $\bigwedge_i x_i = y_i$ $\rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ (function congruence) Page 5 of 31

Theory of Equality T_E II

5. for each positive integer n and n-ary predicate symbol p,

 $\begin{array}{l} \forall x_1, \ldots, x_n, y_1, \ldots, y_n. \ \bigwedge_i x_i = y_i \\ \rightarrow \ \left(p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n) \right) \ (\text{predicate congruence}) \\ (\text{function}) \ \text{and} \ (\text{predicate}) \ \text{are} \ \underline{axiom \ schemata}. \\ \hline \text{Example:} \end{array}$

(function) for binary function f for n = 2:

$$\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \ \rightarrow \ f(x_1, x_2) = f(y_1, y_2)$$

(predicate) for unary predicate p for n = 1:

$$\forall x, y. \ x = y \ \rightarrow \ (p(x) \ \leftrightarrow \ p(y))$$

Note: we omit "congruence" for brevity.

Decidability of T_E I

 T_E is undecidable.

The quantifier-free fragment of T_E is decidable. Very efficient algorithm.

Semantic argument method can be used for T_E

Example: Prove

$$F: a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$$

is T_E -valid.

Decidability of T_E II

Suppose not; then there exists a T_{E} -interpretation I such that $I \not\models F$. Then,

1.	Ι	¥	F	assumption
2.	1	⊨	$a = b \wedge b = c$	1, \rightarrow
3.	1	¥	g(f(a), b) = g(f(c), a)	1, \rightarrow
4.	1	\models	a = b	2, \wedge
5.	1	⊨	b = c	2, \wedge
6.	1	⊨	a = c	4, 5, (transitivity)
7.	1	⊨	f(a) = f(c)	6, (function)
8.	1	⊨	b = a	4, (symmetry)
9.	1	⊨	g(f(a), b) = g(f(c), a)	7, 8, (function)
10.	Ι	Þ	\perp	3, 9 contradictory

F is $T_{\rm E}$ -valid.

Natural Numbers and Integers

 $\begin{array}{ll} \mbox{Natural numbers} & \mathbb{N} = \{0,1,2,\cdots\} \\ \mbox{Integers} & \mathbb{Z} = \{\cdots,-2,-1,0,1,2,\cdots\} \end{array}$

Three variations:

- Peano arithmetic T_{PA}: natural numbers with addition, multiplication, =
- Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition, =
- Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >, =, multiplication by constants

1. Peano Arithmetic T_{PA} (first-order arithmetic)

 $\Sigma_{PA}:\ \{0,\ 1,\ +,\ \cdot,\ =\}$

Equality Axioms: (reflexivity), (symmetry), (transitivity), (function) for +, (function) for \cdot .

And the axioms:

1.
$$\forall x. \neg (x + 1 = 0)$$
 (zero)
2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction)
4. $\forall x. x + 0 = x$ (plus zero)
5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)
6. $\forall x. x \cdot 0 = 0$ (times zero)
7. $\forall x, y. x \cdot (y + 1) = x \cdot y + x$ (times successor)
ine 3 is an axiom schema.

・ロト・(アン・モン・モン・モン・マンペー
Page 10 of 31

Example: 3x + 5 = 2y can be written using Σ_{PA} as

$$x + x + x + 1 + 1 + 1 + 1 + 1 = y + y$$

<u>Note</u>: we have > and \ge since

3x+5 > 2y write as $\exists z. \ z \neq 0 \land 3x+5 = 2y+z$ $3x+5 \ge 2y$ write as $\exists z. \ 3x+5 = 2y+z$

Example:

Existence of pythagorean triples (F is T_{PA} -valid):

$$F: \exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x \cdot x + y \cdot y = z \cdot z$$

Decidability of Peano Arithmetic

 T_{PA} is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem

Peano arithmetic T_{PA} does not capture true arithmetic: There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid. The reason: T_{PA} actually admits *nonstandard interpretations*.

For decidability: no multiplication

2. Presburger Arithmetic $T_{\mathbb{N}}$

Signature $\Sigma_{\mathbb{N}}$: $\{0, 1, +, =\}$ no multiplication!

Axioms of $T_{\mathbb{N}}$ (equality axioms, with 1-5):

1.
$$\forall x. \neg (x + 1 = 0)$$
(zero)2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ (induction)4. $\forall x. x + 0 = x$ (plus zero)5. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)

Line 3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability (and thus $T_{\mathbb{N}}$ -validity) is decidable (Presburger, 1929)

3. Theory of Integers $T_{\mathbb{Z}}$

Signature:

$$\Sigma_{\mathbb{Z}}:\; \{\ldots,-2,-1,0,\; 1,\; 2,\; \ldots, -3\cdot, -2\cdot,\; 2\cdot,\; 3\cdot,\; \ldots,\; +,\; -,\; >,\; =\}$$

where

..., -2, -1, 0, 1, 2, ... are constants
..., -3, -2, 2, 3, ... are unary functions (intended meaning: 2 ⋅ x is x + x, -3 ⋅ x is -x - x - x)
+, -, >, = have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$:

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

- \blacktriangleright For every $\Sigma_{\mathbb{Z}}\text{-formula}$ there is an equisatisfiable $\Sigma_{\mathbb{N}}\text{-formula}.$
- \blacktriangleright For every $\Sigma_{\mathbb{N}}\text{-}\text{formula}$ there is an equisatisfiable $\Sigma_{\mathbb{Z}}\text{-}\text{formula}.$

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are *equisatisfiable* iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

$\Sigma_{\mathbb{Z}}\text{-formula}$ to $\Sigma_{\mathbb{N}}\text{-formula}$ I

Example: consider the $\Sigma_{\mathbb{Z}}\text{-formula}$

$$F_0: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4.$$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0 :

$$F_1: \quad \frac{\forall w_p, w_n, x_p, x_n. \exists y_p, y_n, z_p, z_n.}{(x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 7 > -3(w_p - w_n) + 4}$$

Eliminate - by moving to the other side of >:

$$F_2: \quad \begin{cases} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4 \end{cases}$$

$\Sigma_{\mathbb{Z}}\text{-formula}$ to $\Sigma_{\mathbb{N}}\text{-formula}$ II

Eliminate > and numbers:

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:

- transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula $\neg G$,
- decide $T_{\mathbb{N}}$ -validity of G.

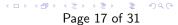
 $\Sigma_{\mathbb{Z}}\text{-formula}$ to $\Sigma_{\mathbb{N}}\text{-formula}$ III

Example: The $\Sigma_{\mathbb{N}}\text{-formula}$

$$\forall x. \exists y. x = y + 1$$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}\text{-formula}$:

$$\forall x. \ x > -1 \ \rightarrow \ \exists y. \ y > -1 \land x = y + 1.$$



Rationals and Reals

Signatures:

$$\begin{array}{rcl} \Sigma_{\mathbb{Q}} & = & \{0, \ 1, \ +, \ -, \ =, \ \geq \} \\ \Sigma_{\mathbb{R}} & = & \Sigma_{\mathbb{Q}} \cup \{\cdot\} \end{array}$$

• Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow \quad x = \pm \sqrt{2}$$

• Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$\underbrace{2x}_{x+x} = 7 \quad \Rightarrow \quad x = \frac{7}{2}$$

Note: strict inequality okay; simply rewrite

$$x + y > z$$

as follows:

$$\neg (x + y = z) \land x + y \ge z, \quad \text{are the first set on a set of } 31$$

1. Theory of Reals $T_{\mathbb{R}}$

Signature:

$$\Sigma_{\mathbb{R}}:\ \{0,\ 1,\ +,\ -,\ \cdot,\ =,\ \geq\}$$

with multiplication. Axioms in text.

Example:

$$\forall a, b, c. \ b^2 - 4ac \ge 0 \ \leftrightarrow \ \exists x. \ ax^2 + bx + c = 0$$

is $T_{\mathbb{R}}$ -valid.

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

2. Theory of Rationals $T_{\mathbb{Q}}$

Signature:

$$\Sigma_{\mathbb{Q}}:\ \{0,\ 1,\ +,\ -,\ =,\ \geq\}$$

without multiplication. Axioms in text.

Rational coefficients are simple to express in $T_{\mathbb{Q}}$.

Example: Rewrite

$$\frac{1}{2}x + \frac{2}{3}y \ge 4$$

as the $\Sigma_{\mathbb{Q}}\text{-formula}$

$$3x + 4y \ge 24$$

 $\mathcal{T}_{\mathbb{Q}}$ is decidable Quantifier-free fragment of $\mathcal{T}_{\mathbb{Q}}$ is efficiently decidable

Recursive Data Structures (RDS) I

Tuples of variables where the elements can be instances of the same structure: e.g., linked lists or trees.

1. Theory T_{cons} (LISP-like lists)

Signature:

$$\Sigma_{\mathsf{cons}}$$
: {cons, car, cdr, atom, =}

where

$$cons(a, b)$$
- list constructed by concatenating a and b
 $car(x)$ - left projector of x : $car(cons(a, b)) = a$
 $cdr(x)$ - right projector of x : $cdr(cons(a, b)) = b$
 $atom(x)$ - true iff x is a single-element list

<u>Note</u>: an atom is simply something that is not a cons. In this formulation, there is no NIL value.

Recursive Data Structures (RDS) II

Axioms:

- 1. The axioms of reflexivity, symmetry, and transitivity of =
- 2. Function Congruence axioms

$$\begin{aligned} \forall x_1, x_2, y_1, y_2. \ x_1 &= x_2 \land y_1 = y_2 \rightarrow \operatorname{cons}(x_1, y_1) = \operatorname{cons}(x_2, y_2) \\ \forall x, y. \ x &= y \rightarrow \operatorname{car}(x) = \operatorname{car}(y) \\ \forall x, y. \ x &= y \rightarrow \operatorname{cdr}(x) = \operatorname{cdr}(y) \end{aligned}$$

3. Predicate Congruence axiom

$$\forall x, y. \ x = y \ \rightarrow \ (\operatorname{atom}(x) \ \leftrightarrow \ \operatorname{atom}(y))$$

4.
$$\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$$
(left projection)5. $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$ (right projection)6. $\forall x. \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = x$ (construction)7. $\forall x, y. \neg \operatorname{atom}(\operatorname{cons}(x, y))$ (atom)

<u>Note</u>: the behavior of car and cons on atoms is not specified.

 T_{cons} is undecidable Quantifier-free fragment of T_{cons} is efficiently decidable

Lists with equality

2. Theory T_{cons}^{E} (lists with equality)

$$T_{\rm cons}^E$$
 = $T_{\rm E} \cup T_{\rm cons}$

Signature:

 $\Sigma_{\mathsf{E}}~\cup~\Sigma_{\mathsf{cons}}$

(this includes uninterpreted constants, functions, and predicates)

<u>Axioms</u>: union of the axioms of T_E and T_{cons}

 T_{cons}^{E} is undecidable Quantifier-free fragment of T_{cons}^{E} is efficiently decidable

Example: The Σ_{cons}^{E} -formula

$$F: \begin{array}{c} \operatorname{car}(x) = \operatorname{car}(y) \wedge \operatorname{cdr}(x) = \operatorname{cdr}(y) \wedge \neg \operatorname{atom}(x) \wedge \neg \operatorname{atom}(y) \\ \rightarrow f(x) = f(y) \end{array}$$

is T_{cons}^E -valid.

Suppose not; then there exists a T_{cons}^{E} -interpretation I such that $I \not\models F$. Then,

1.	Ι	¥	F	assumption		
2.	1	Þ	$\operatorname{car}(x) = \operatorname{car}(y)$	1, $ ightarrow$, $ ightarrow$		
3.	1	Þ	$\operatorname{cdr}(x) = \operatorname{cdr}(y)$	1, $ ightarrow$, $ ightarrow$		
4.	1	Þ	\neg atom(x)	1, $ ightarrow$, $ ightarrow$		
5.	1	Þ	\neg atom(y)	1, \rightarrow , \wedge		
6.	1	¥	f(x) = f(y)	1, \rightarrow		
7.	1	Þ	cons(car(x), cdr(x)) = cons(car(y), cdr(y))			
				2, 3, (function)		
8.	1	Þ	cons(car(x), cdr(x)) = x	4, (construction)		
9.	1	Þ	cons(car(y), cdr(y)) = y	5, (construction)		
10.	1	Þ	x = y	7, 8, 9, (transitivity)		
11.	1	Þ	f(x) = f(y)	10, (function)		
Lines 6 and 11 are contradictory, so our assumption that $I \not\models F$ must be wrong. Therefore, F is T_{cons}^E -valid.						

Page 25 of 31

Theory of Arrays T_A

Signature:

$$\Sigma_{\mathsf{A}}:\ \{\cdot[\cdot],\ \cdot\langle\cdot\triangleleft\cdot\rangle,\ =\}$$

where

- ▶ a[i] binary function read array a at index i ("read(a,i)")
- a⟨i ⊲ v⟩ ternary function –
 write value v to index i of array a ("write(a,i,v)")

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of \mathcal{T}_{E}

2.
$$\forall a, i, j. i = j \rightarrow a[i] = a[j]$$
(array congruence)3. $\forall a, v, i, j. i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$ (read-over-write 1)4. $\forall a, v, i, j. i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$ (read-over-write 2)

<u>Note</u>: = is only defined for array elements

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

not T_A -valid, but

$$F': a[i] = e \rightarrow \forall j. a \langle i \triangleleft e \rangle [j] = a[j] ,$$

is T_A -valid.

Also

$$a = b \rightarrow a[i] = b[i]$$

is not T_A -valid: We have only axiomatized a restricted congruence.

 T_A is undecidable Quantifier-free fragment of T_A is decidable

2. Theory of Arrays $T_A^=$ (with extensionality)

Signature and axioms of $T_A^=$ are the same as T_A , with one additional axiom

 $\forall a, b. \ (\forall i. \ a[i] = b[i]) \ \leftrightarrow \ a = b \quad (\text{extensionality})$

Example:

$$F: a[i] = e \rightarrow a\langle i \triangleleft e \rangle = a$$

is $T_A^=$ -valid.

 $T_{\rm A}^{=}$ is undecidable Quantifier-free fragment of $T_{\rm A}^{=}$ is decidable

First-Order Theories

		Quantifiers	QFF
	Theory	Decidable	Decidable
T_E	Equality	—	✓
T_{PA}	Peano Arithmetic	—	—
$T_{\mathbb{N}}$	Presburger Arithmetic	1	1
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	1	1
${\mathcal T}_{\mathbb R}$	Real Arithmetic	\checkmark	1
$T_{\mathbb{Q}}$	Linear Rationals	1	1
$T_{\rm cons}$	Lists	—	1
$T_{\rm cons}^E$	Lists with Equality	—	\checkmark

Combination of Theories

How do we show that

$$1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)$$

is $(T_E \cup T_Z)$ -valid? Or how do we prove properties about an array of integers, or a list of reals ...?

Given theories T_1 and T_2 such that

$$\Sigma_1 \ \cap \ \Sigma_2 \quad = \quad \{=\}$$

The combined theory $T_1 \cup T_2$ has

- signature $\Sigma_1 \cup \Sigma_2$
- axioms $A_1 \cup A_2$

Nelson & Oppen showed that, if

- validity of the quantifier-free fragment (qff) of T_1 is decidable,
- validity of qff of T_2 is decidable, and
- certain technical simple requirements are met,

then validity of qff of $T_1 \cup T_2$ is decidable.