
Overview Graph Coverage CriteriaOverview Graph Coverage Criteria
(Introduction to Software Testing(Introduction to Software Testing(g(g

Chapter 2.1, 2.2)Chapter 2.1, 2.2)

Paul Paul AmmannAmmann & Jeff Offutt& Jeff Offutt

Graph Coverage Criteria Graph Coverage Criteria SubsumptionSubsumption
Complete Path

Coverage
CPC

Prime Path
Coverage

Edge-Pair
C

PPC
All-DU-Paths

Coverage
ADUP g

Coverage
EPC

Complete Round
Trip Coverage

ADUP

All-uses
Coverage

Simple Round

Edge
Coverage

EC

Trip Coverage
CRTC

Coverage
AUC

All defs Simple Round
Trip Coverage

SRTCNode
Coverage

All-defs
Coverage

ADC

2

NC

Covering Graphs (2.1)Covering Graphs (2.1)g p ()g p ()

Graphs are the mostGraphs are the most commonlycommonly used structure for testingused structure for testingGraphs are the most Graphs are the most commonlycommonly used structure for testingused structure for testing

Graphs can come from Graphs can come from many sourcesmany sources
Control flow graphsControl flow graphs
Design structureDesign structure
FSMs andFSMs and statechartsstatechartsFSMs and FSMs and statechartsstatecharts
Use casesUse cases

Tests usually are intended to “Tests usually are intended to “covercover” the graph in some way” the graph in some way

3

Definition of a GraphDefinition of a GraphDefinition of a GraphDefinition of a Graph

A set A set NN of of nodesnodes, , NN is not emptyis not empty

A setA set NN ofof initial nodesinitial nodes NN is not emptyis not emptyA set A set NN00 of of initial nodesinitial nodes, , NN00 is not emptyis not empty

A setA set NNff ofof final nodesfinal nodes NNff is not emptyis not emptyA set A set NNff of of final nodesfinal nodes, , NNff is not emptyis not empty

A set A set EE of of edgesedges, each edge from one node to another, each edge from one node to anothergg , g, g
((nnii , , nnjj),), ii is is predecessorpredecessor, , jj is is successorsuccessor

4

Three Example GraphsThree Example GraphsThree Example GraphsThree Example Graphs

0 00 1 2

21 2143 5 6
Not aNot a
validvalid21 2143 5 6
graphgraph

3 397 8

N0 = { 0 }

N { 3 }

N0 = { }

N { 3 }

N0 = { 0, 1, 2 }

N { 7 8 9 }

5

Nf = { 3 } Nf = { 3 }Nf = { 7, 8, 9 }

Paths in GraphsPaths in GraphsPaths in GraphsPaths in Graphs
PathPath : A sequence of nodes : A sequence of nodes –– [n[n11, n, n22, …, , …, nnMM]]

Each pair of nodes is an edgeEach pair of nodes is an edgeEach pair of nodes is an edgeEach pair of nodes is an edge

LengthLength : : The number of edgesThe number of edges
A single node is a path of length 0A single node is a path of length 0g p gg p g

SubpathSubpath :: A subsequence of nodes in A subsequence of nodes in pp is a is a subpathsubpath of of pp
ReachReach ((nn) :) : SubgraphSubgraph that can be reached from that can be reached from nn(()) g pg p

0 1 2
Paths Reach (0) = { 0 3 4

43 5 6

Paths

[0, 3, 7]

[1 4 8 5 1]

Reach (0) { 0, 3, 4,
7, 8, 5, 1, 9 }

Reach ({0, 2}) = G43 5 6 [1, 4, 8, 5, 1]

[2, 6, 9] Reach([2,6]) = {2, 6,
9}

6

97 8

Test Paths and SESEsTest Paths and SESEs
Test PathTest Path : A path that starts at an initial node and ends at a : A path that starts at an initial node and ends at a
final nodefinal node
Test paths represent execution of test casesTest paths represent execution of test cases

Some test paths can be executed by many testsSome test paths can be executed by many tests
Some test paths cannot be executed by Some test paths cannot be executed by anyany teststests

SESE graphsSESE graphs : All test paths start at a single node and end: All test paths start at a single node and endSESE graphsSESE graphs : All test paths start at a single node and end : All test paths start at a single node and end
at another nodeat another node

SingleSingle--entry, singleentry, single--exitexitgg y, gy, g
N0 and N0 and NfNf have exactly one nodehave exactly one node

1 4
Double-diamond graph

Four test paths

0

2

63

5

[0, 1, 3, 4, 6]
[0, 1, 3, 5, 6]
[0, 2, 3, 4, 6]

7

2 5 [, , , ,]
[0, 2, 3, 5, 6]

Visiting and TouringVisiting and Touringg gg g
VisitVisit :: A test path A test path pp visitsvisits node node nn if if nn is in is in pp

A test pathA test path pp visitsvisits edgeedge ee ifif ee is inis in ppA test path A test path pp visitsvisits edge edge ee if if ee is in is in pp
TourTour : A test path : A test path pp tourstours subpathsubpath qq if if qq is a is a subpathsubpath of of pp

Path [0, 1, 3, 4, 6]

Visits nodes 0, 1, 3, 4, 6

Visits edges (0, 1), (1, 3), (3, 4), (4, 6)g

Tours subpaths (0, 1, 3), (1, 3, 4), (3, 4, 6), (0, 1, 3, 4), (1, 3, 4, 6)

8

Tests and Test PathsTests and Test Pathsests a d est at sests a d est at s
pathpath ((tt)) : The test path executed by test : The test path executed by test tt

pathpath ((TT)) : The set of test paths executed by the set of tests : The set of test paths executed by the set of tests TT

Each test executes Each test executes one and only one one and only one test pathtest path
A location in a graph (node or edge) can be A location in a graph (node or edge) can be reachedreached from from
another location if there is a sequence of edges from the first another location if there is a sequence of edges from the first
location to the secondlocation to the secondlocation to the secondlocation to the second

SyntacticSyntactic reachreach : A : A subpathsubpath exists in the graphexists in the graph
SemanticSemantic reachreach : A test exists that can execute that : A test exists that can execute that subpathsubpathpp

9

Tests and Test PathsTests and Test Paths
test 1 many-to-one

test 2 Test
Path

test 3

Deterministic software – a test always executes the same test path

test 1 many-to-many Test Path 1

Deterministic software a test always executes the same test path

test 2 Test Path 2

test 3 Test Path 3

10

Non-deterministic software – a test can execute different test paths

Testing and Covering Graphs (2.2)Testing and Covering Graphs (2.2)g g p ()g g p ()
We use graphs in testing as follows :We use graphs in testing as follows :

Developing a model of the software as a graphDeveloping a model of the software as a graphDeveloping a model of the software as a graphDeveloping a model of the software as a graph
Requiring tests to visit or tour specific sets of nodes, edges or Requiring tests to visit or tour specific sets of nodes, edges or subpathssubpaths

• Test Requirements (TR) : Describe properties of test pathsTest Requirements (TR) : Describe properties of test paths
• Test Criterion : Rules that define test requirements
• Satisfaction : Given a set TR of test requirements for a criterion C• Satisfaction : Given a set TR of test requirements for a criterion C,

a set of tests T satisfies C on a graph if and only if for every test
requirement in TR, there is a test path in path(T) that meets the test
requirement trrequirement tr

• Structural Coverage Criteria : Defined on a graph just in terms
of nodes and edgesof nodes and edges

• Data Flow Coverage Criteria : Requires a graph to be annotated
with references to variables

11

Node and Edge CoverageNode and Edge Coverage
Edge coverage is slightly stronger than node coverage Edge coverage is slightly stronger than node coverage

• The “length up to 1” allows for graphs with one node and
no edges

• NC and EC are only different when there is an edge and
another subpath between a pair of nodes (as in an “if-p p (
else” statement)

Node Coverage : TR = { 0, 1, 2 }
Test Path = [0, 1, 2]0 Test Path [0, 1, 2]

Edge Coverage : TR = { (0,1), (0, 2), (1, 2) }
Test Paths = [0 1 2]

1

2

0

12

Test Paths = [0, 1, 2]
[0, 2]

2

Paths of Length 1 and 0Paths of Length 1 and 0

A graph with A graph with only one node only one node will not have any edges will not have any edges

0

• It may be boring, but formally, Edge Coverage needs to
require Node Coverage on this graph

• Otherwise, Edge Coverage will not subsume Node
Coverage

– So we define “length up to 1” instead of simply “length 1”

0
• We have the same issue with graphs that only

have one edge for Edge Pair Coverage 0have one edge – for Edge Pair Coverage …

13

1

Covering Multiple EdgesCovering Multiple Edges
EdgeEdge--pair coverage requires pair coverage requires pairs of edgespairs of edges, or , or subpathssubpaths of of
length 2length 2

• The “length up to 2” is used to include graphs that have
less than 2 edges

• The logical extension is to require all paths …

• Unfortunately, this is impossible if the graph has a loop, so a
weak compromise is to make the tester decide which paths:weak compromise is to make the tester decide which paths:

14

Structural Coverage ExampleStructural Coverage Example
Node Coverage

TRNC = { 0, 1, 2, 3, 4, 5, 6 }
T t P th [0 1 2 3 6] [0 1 2 4 5 4 6]Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 5, 4, 6]

0 Edge Coverage
TR {(0 1) (0 2) (1 2) (2 3) (2 4) (3 6) (4 5) (4 6) (5 4)}

1
TREC ={(0,1),(0,2),(1,2), (2,3), (2,4), (3,6), (4,5),(4,6), (5,4)}
Test Paths: [0, 1, 2, 3, 6] [0, 2, 4, 5, 4, 6]

Ed P i C2

3 4

Edge-Pair Coverage
TREPC = { [0,1,2], [0,2,3], [0,2,4], [1,2,3], [1,2,4], [2,3,6],

[2,4,5], [2,4,6], [4,5,4], [5,4,5], [5,4,6] }
3 4 Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 2, 3, 6]

[0, 2, 4, 5, 4, 5, 4, 6]
5

6 Complete Path Coverage
Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 1, 2, 4, 5, 4, 6]
[0, 1, 2, 4, 5, 4, 5, 4, 6] [0, 1, 2, 4, 5, 4, 5, 4, 5, 4, 6] …

5

15

[, , , , , , , ,] [, , , , , , , , , ,]

Loops in GraphsLoops in Graphsp pp p
If a graph contains a loop, it has an If a graph contains a loop, it has an infiniteinfinite number of number of
pathspathspathspaths

Thus, CPC is Thus, CPC is not feasiblenot feasible,,

SPC is not satisfactory because the results are SPC is not satisfactory because the results are
subjectivesubjective and vary with the testerand vary with the tester

Attempts to “deal with”Attempts to “deal with” loops:loops:Attempts to deal with”Attempts to deal with” loops:loops:
1970s1970s : Execute cycles once ([4, 5, 4] in previous example, informal): Execute cycles once ([4, 5, 4] in previous example, informal)
1980s1980s : Execute each loop, exactly once (formalized): Execute each loop, exactly once (formalized)p, y ()p, y ()
1990s1990s : Execute loops 0 times, once, more than once (informal : Execute loops 0 times, once, more than once (informal
description)description)
2000s2000s : Prime paths: Prime paths2000s2000s : Prime paths: Prime paths

16

Simple Paths and Prime PathsSimple Paths and Prime Pathspp
Simple PathSimple Path :: A path from node A path from node nnii to to nnjj is simple, is simple, if no node if no node
appears more than once, except possibly the first and lastappears more than once, except possibly the first and lastappears more than once, except possibly the first and last appears more than once, except possibly the first and last
nodes are the samenodes are the same

No internal loopsNo internal loops
Includes all other Includes all other subpathssubpaths
A loop is a simple pathA loop is a simple path

Prime PathPrime Path :: A simple path that does not appear as a properA simple path that does not appear as a properPrime PathPrime Path : : A simple path that does not appear as a proper A simple path that does not appear as a proper
subpathsubpath of any other simple pathof any other simple path

Simple Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],p [, , ,], [, , ,], [, , ,],
[2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2],
[2, 3, 0, 1], [0, 1, 3], [0, 2, 3], [1, 3, 0], [2, 3, 0],
[3 0 1] [3 0 2] [0 1] [0 2] [1 3] [2 3] [3 0]

0
[3, 0, 1], [3, 0, 2], [0, 1], [0, 2], [1, 3], [2, 3], [3, 0],
[0], [1], [2], [3]

Prime Paths : [0 1 3 0] [0 2 3 0] [1 3 0 1]

1 2

3

17

Prime Paths : [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1],
[2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2],
[2, 3, 0, 1]

Prime Path CoveragePrime Path Coveragegg
A simple, elegant and finite criterion that requires A simple, elegant and finite criterion that requires loopsloops to be to be
executed as well as skippedexecuted as well as skippedpppp

• Will tour all paths of length 0, 1, …
• That is, it subsumes node, edge, and edge-pair coverage

18

Prime Path ExamplePrime Path Example
The previous example has 38 The previous example has 38 simplesimple pathspaths
OnlyOnly ninenine prime pathsprime pathsOnlyOnly ninenine prime pathsprime paths

Prime Paths
[0, 1, 2, 3, 6]

0

1 [0, 1, 2, 3, 6]
[0, 1, 2, 4, 5]
[0, 1, 2, 4, 6]

[0 2 3 6]2

1
Execute

loop 0 times
[0, 2, 3, 6]
[0, 2, 4, 5]
[0, 2, 4, 6]

[5 4 6]

Execute
loop once3 4

[5, 4, 6]
[4, 5, 4]
[5, 4, 5]

Execute loop
more than once

5
6

19

Simple & Prime Path ExampleSimple & Prime Path Example
‘!’ means path

terminatesLen 2
[0, 1, 2]

Len 0
[0]

Len 1
[0, 1] ‘*’ means path

Len 3
[0, 1, 2, 3]

Simple
paths [0, 1, 2]

[0, 2, 3]
[0, 2, 4]
[1 2 3]

0

[0]
[1]
[2]
[3]

[0, 1]
[0, 2]
[1, 2]
[2 3]

‘*’ means path
cycles

[0, 1, 2, 3]
[0, 1, 2, 4]
[0, 2, 3, 6] !
[0 2 4 6] !

paths

[1, 2, 3]
[1, 2, 4]
[2, 3, 6] !
[2 4 6] !

1
[3]
[4]
[5]
[6] !

[2, 3]
[2, 4]
[3, 6] !
[4 6] !

[0, 2, 4, 6] !
[0, 2, 4, 5] !
[1, 2, 3, 6] !
[1 2 4 5] ![2, 4, 6] !

[2, 4, 5] !
[4, 5, 4] *

2

3 4

[6] ! [4, 6] !
[4, 5]
[5, 4]

[1, 2, 4, 5] !
[1, 2, 4, 6] !

[5, 4, 6] !
[5, 4, 5] *

5

3 4

L 46 Len 4
[0, 1, 2, 3, 6] !
[0, 1, 2, 4, 6] ! Prime Paths

20

[0, 1, 2, 4, 5] !

Note that paths w/o ! or * cannot be prime paths

Round TripsRound Tripspp
RoundRound--Trip PathTrip Path : : A prime path that starts and ends at the A prime path that starts and ends at the
same nodesame nodesame nodesame node

These criteria omit nodes and edges that are not in round trips• These criteria omit nodes and edges that are not in round trips
• That is, they do not subsume edge-pair, edge, or node coverage

21

Touring, Touring, SidetripsSidetrips and Detoursand Detours
Prime paths do not have Prime paths do not have internal loops internal loops … test paths … test paths mightmight

• Tour : A test path p tours subpath q if q is a subpath of p

• Tour With Sidetrips : A test path p tours subpath q with
id t i iff d i i l i i th dsidetrips iff every edge in q is also in p in the same order
• The tour can include a sidetrip, as long as it comes back to the

same node

• Tour With Detours : A test path p tours subpath q with
detours iff every node in q is also in p in the same order

• The tour can include a detour from node ni, as long as it comes
back to the prime path at a successor of ni

22

back to the prime path at a successor of ni

SidetripsSidetrips and Detours Exampleand Detours Example
0 21 54

1 2 3 4

3
Touring without
sidetrips or
detours

0 21 54
1 2 5 6

3 4

3
Touring with a
sidetrip

3 4

0 21 54
1 2 5

3

3Touring with a
detour

3
4

23

Infeasible Test RequirementsInfeasible Test Requirements
AnAn infeasibleinfeasible test requirement test requirement cannot be satisfiedcannot be satisfied

Unreachable statement (dead code)Unreachable statement (dead code)Unreachable statement (dead code)Unreachable statement (dead code)
A A subpathsubpath that can only be executed if a contradiction occurs (that can only be executed if a contradiction occurs (X > 0X > 0 and and X < 0X < 0))

• Most test criteria have some infeasible test requirements
• It is usually undecidable whether all test requirements are

feasiblefeasible
• When sidetrips are not allowed, many structural criteria have

more infeasible test requirements

Practical recommendation – Best Effort Touring

• However, always allowing sidetrips weakens the test criteria

Practical recommendation – Best Effort Touring
– Satisfy as many test requirements as possible without sidetrips
– Allow sidetrips to try to satisfy unsatisfied test requirements

24

Data Flow CoverageData Flow Coverage

25

Data Flow CriteriaData Flow Criteria
Goal: Try to ensure that values are computed and used correctly

DefinitionDefinition : A location where a value for a variable is stored into me: A location where a value for a variable is stored into me
morymory
UseUse : A location where a variable’s value is accessed: A location where a variable’s value is accessed
def (n) or def (e)def (n) or def (e) : The set of variables that are defined by node n o: The set of variables that are defined by node n o
r edge er edge er edge er edge e
use (n) or use (e)use (n) or use (e) : The set of variables that are used by node n or : The set of variables that are used by node n or
edge eedge eedge eedge e

1 4X = 42

Z = X*2 Defs: def (0) = {X}

def (4) = {Z}

0

2

63

5

X 42
def (5) = {Z}

Uses: use (4) = {X}

26

Z = X-8 use (5) = {X}

DU Pairs and DU PathsDU Pairs and DU PathsDU Pairs and DU PathsDU Pairs and DU Paths

DUDU pairpair :: AA pairpair ofof locationslocations ((llii,, lljj)) suchsuch thatthat aa variablevariable vv
isis defineddefined atat llii andand usedused atat lljj
D fD f ll AA thth ff ll tt ll ii d fd f ll ithith tt ttDefDef--clearclear :: AA pathpath fromfrom llii toto lljj isis defdef--clearclear withwith respectrespect toto
variablevariable v,v, ifif vv isis notnot givengiven anotheranother valuevalue onon anyany ofof thethe nn
odesodes oror edgesedges inin thethe pathpathodesodes oror edgesedges inin thethe pathpath

ReachReach :: IfIf therethere isis aa defdef--clearclear pathpath fromfrom llii toto lljj withwith respectrespect toto vv,,
thethe defdef ofof vv atat llii reachesreaches thethe useuse atat lljj

dudu--pathpath :: AA simplesimple subpathsubpath thatthat isis defdef--clearclear withwith respectrespect
toto vv fromfrom aa defdef ofof vv toto aa useuse ofof vv
dudu ((nnii,, nnjj,, vv)) –– thethe setset ofof dudu--pathspaths fromfrom nnii toto nnjj

dudu ((nnii,, vv)) –– thethe setset ofof dudu--pathspaths thatthat startstart atat nnii

27

Touring DUTouring DU PathsPathsTouring DUTouring DU--PathsPaths

A test path A test path pp dudu--tourstours subpathsubpath dd with respect to with respect to vv if if pp tours tours dd
and the and the subpathsubpath taken is deftaken is def--clear with respect to clear with respect to vv

SidetripsSidetrips can be used, just as with previous touringcan be used, just as with previous touring

Three criteriaThree criteria
U d fU d fUse every defUse every def
Get to every useGet to every use
Follow all duFollow all du--pathspaths

28

Data Flow Test CriteriaData Flow Test Criteria
• First, we make sure every def reaches a use

• Then we make sure that every def reaches all possible
usesuses

• Finally, we cover all the paths between defs and usesy, p

29

Data Flow Testing ExampleData Flow Testing Exampleata o est g a p eata o est g a p e

1 4
Z = X*2

0

1

63

4X = 42

2 5
Z = X-8

All-defs for X All-uses for X All-du-paths for X

[0, 1, 3, 4] [0, 1, 3, 4]

[0, 1, 3, 5]

[0, 1, 3, 4]

[0, 2, 3, 4][, , ,] [, , ,]

[0, 1, 3, 5]

[0 2 3 5]
30

[0, 2, 3, 5]

Graph Coverage Criteria Graph Coverage Criteria SubsumptionSubsumption
Complete Path

Coverage
CPC

Assumptions for Data Flow Coverage
1.Every use is preceded by a def
2.Every def reaches at least one use
3 F d ith lti l t i d

Prime Path
Coverage

3.For every node with multiple outgoing edges,
at least one variable is used on each out edge,
and the same variables are used on each out
edge.

Edge-Pair
C

PPC
All-DU-Paths

Coverage
ADUP

g

g
Coverage

EPC
Complete Round

Trip Coverage

ADUP

All-uses
Coverage

Simple Round

Edge
Coverage

EC

Trip Coverage
CRTC

Coverage
AUC

All defs Simple Round
Trip Coverage

SRTCNode
Coverage

All-defs
Coverage

ADC

31

NC

