SAT Solver Heuristics

SAT-solver History

- Started with David-Putnam-Logemann-Loveland (DPLL) (1962)
- Able to solve 10-15 variable problems
- Satz (Chu Min Li, 1995)
- Able to solve some 1000 variable problems
- Chaff (Malik et al., 2001)
- Intelligently hacked DPLL, Won the 2004 competition
- Able to solve some 10000 variable problems
- Current state-of-the-art
- MiniSAT and SATELITEGTI (Chalmer's university, 2004-2006)
- Jerusat and Haifasat (Intel Haifa, 2002)
- Ace (UCLA, 2004-2006)

MiniSAT

- MiniSat is a fast SAT solver developed by Niklas Eén an d Niklas Sörensson
- MiniSat won all industrial categories in SAT 2005 competition
- MiniSat won SAT-Race 2006
- MiniSat is simple and well-documented
- Well-defined interface for general use
- Helpful implementation documents and comments
- Minimal but efficient heuristic
- Main.C (344 lines)
- Solver.C (741 lines)

Overview (1/2)

- A set of propositional variables and CNF clauses involving variables
$-\left(x_{1} \vee x_{1}{ }^{\prime} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{1}{ }^{\prime} \vee x_{4}\right)$
$-x_{1}, x_{2}, x_{3}$ and x_{4} are variables (true or false)
- Literals: Variable and its negation
$-\mathrm{x}_{1}$ and $\mathrm{x}_{1}{ }^{\prime}$
- A clause is satisfied if one of the literals is true
- $x_{1}=$ true satisfies clause 1
$-x_{1}=$ false satisfies clause 2
- Solution: An assignment that satisfies all clauses

Overview (2/2)

- Unit clause is a clause in which all but one of literals is assigned to False
- Unit literal is the unassigned literal in a unit clause

$$
\begin{aligned}
& \left(x_{0}\right) \wedge \\
& \left(-x_{0} \vee x_{1}\right) \wedge \\
& \left(-x_{2} \vee-x_{3} \vee-x_{4}\right) \wedge
\end{aligned}
$$

- $\left(x_{0}\right)$ is a unit clause and ' x_{0} ' is a unit literal
- $\left(-x_{0} \vee x_{1}\right)$ is a unit clause since x_{0} has to be True
$-\left(-x_{2} \vee-x_{3} \vee-x_{4}\right)$ can be a unit clause if the current assignment is that x_{3} and x_{4} are True
- Boolean Constrain Propagation(BCP) is the process of assigning the True value to all unit literals

DPLL Overview (1/3)

```
/* The Quest for Efficient Boolean Satisfiability Solvers
* by L.Zhang and S.Malik, Computer Aided Verification 2002 */
DPLL(a formula ', assignment) {
    necessary = deduction(' , assignment);
    new_asgnment = union(necessary, assignment);
    if (is_satisfied(' , new_asgnment))
        return SATISFIABLE;
    else if (is_conflicting(', new_asgnmnt))
        return UNSATISFIABLE;
    var = choose_free_variable(' , new_asgnmnt);
    asgn1 = union(new_asgnmnt, assign(var, 1));
    if (DPLL(', asgn1) == SATISFIABLE)
            return SATISFIABLE;
    else {
            asgn2 = union (new_asgnmnt, assign(var,0));
            return DPLL (' , asgn2);
    }
}
```

DPLL Overview (2/3)

$$
\{p \vee r\} \wedge\{\neg p \vee \neg q \vee r\} \wedge\{p \vee \neg r\}
$$

SIMPLIFY

DPLL Overview (3/3)

```
/* overall structure of Minisat solve procedure */
Solve(){
    while(true){
        boolean_constraint_propagation();
        if(no_conflict){
            if(no_unassigned_variable) return SAT;
            make_decision();
            }else{
                if (no_decisions_made) return UNSAT;
                analyze_conflict();
                undo_assignments();
                add_conflict_clause();
        }
    }
}
```


Conflict Clause Analysis (1/10)

- A conflict happens when one clause is falsified by unit propagation

$$
\begin{aligned}
& \text { Assume } x_{4} \text { is False } \\
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(-x_{1} \vee x_{2}\right) \wedge \\
& \left(-x_{2} v x_{3}\right) \wedge \\
& \left(-x_{3} v-x_{2} \vee-x_{1}\right) \text { Falsified! } \\
& \text { Omitted clauses }
\end{aligned}
$$

- Analyze the conflicting clause to infer a clause
$-\left(-x_{3} \vee-x_{2} \vee-x_{1}\right)$ is conflicting clause
- The inferred clause is a new knowledge
- A new learnt clause is added to constraints

Conflict Clause Analysis (2/10)

- Learnt clauses are inferred by conflict analysis

$$
\begin{aligned}
& \left(x_{1} v x_{4}\right) \wedge \\
& \left(-x_{1} v x_{2}\right) \wedge \\
& \left(-x_{2} v x_{3}\right) \wedge \\
& \left(-x_{3} v-x_{2} v-x_{1}\right) \wedge \\
& \text { omitted clauses } \wedge
\end{aligned}
$$

- They help prune future parts of the search space
- Assigning False to x_{4} is the casual of conflict
- Adding $\left(x_{4}\right)$ to constraints prohibit conflict from $-x_{4}$
- Learnt clauses actually drive backtracking

Conflict Clause Analysis (3/10)

```
/* conflict analysis algorithm */
Analyze_conflict(){
    cl = find_conflicting_clause();
    |* Loop until cl is falsified and one literal whose value is determined in current
    decision level is remained */
    While(!stop_criterion_met(cl)){
            lit = choose_literal(cl); /* select the last propagated literal *|
            Var = variable_of_literal(lit);
            ante = antecedent(var);
            cl = resolve(cl, ante, var);
    }
    add_clause_to_database(cl);
    |* backtrack level is the lowest decision level for which the learnt clause is unit
    clause *l
    back_dl = clause_asserting_level(cl);
    return back_dl;
}

\section*{Conflict Clause Analysis (4/10)}
- Example of conflict clause analysis
- a, b, c, d, e, f, g, and h: 8 variables ( \(2^{8}\) cases)
\[
\begin{aligned}
& (-f \vee e) \wedge \\
& (-g \vee f) \wedge \\
& (b \vee a \vee e) \wedge \\
& ((c \vee e \vee f \vee-b) \wedge \\
& (-h \vee g) \\
& (d \vee-b \vee h) \wedge \\
& (-b \vee-c \vee-d) \wedge \\
& ((c \vee d)
\end{aligned}
\]
Satisfiable?

\section*{Conflict Clause Analysis (5/10)}
\begin{tabular}{|c|c|}
\hline Assignments & antecedent \\
\hline \(e=F\) ) & assumption \\
\hline \(\mathrm{f}=\mathrm{F}\) & -fve \\
\hline \(\mathrm{g}=\mathrm{F}\) \} DLevel=1 & -gvf \\
\hline \(h=F\), & -hvg \\
\hline \(a=F\), & assumption \\
\hline \(b=T \quad\) Dlevel \(=2\) & bvave \\
\hline \(\mathrm{c}=\mathrm{T}\) \} & cvevfv-b \\
\hline \(\mathrm{d}=\mathrm{T}\), & \(d v-b v h\) \\
\hline
\end{tabular}


Example slides are from CMU 15-414 course ppt

\section*{Conflict Clause Analysis (6/10)}
\begin{tabular}{|c|c|}
\hline Assignments & antecedent \\
\hline \(e=F\) ) & assumption \\
\hline \(\mathrm{f}=\mathrm{F}\) & -fve \\
\hline \(\mathrm{g}=\mathrm{F}\) & -gvf \\
\hline \(h=F\) & -hvg \\
\hline \(a=F 7\) & assumption \\
\hline \(b=T\) & bvave \\
\hline \(\mathrm{c}=\mathrm{T}\) \} DLevel=2 & cvevfv-b \\
\hline \(\mathrm{d}=\mathrm{T}\), & \(d v-b v h\) \\
\hline
\end{tabular}

\(-b v-c v-d\)

\section*{Resolution}
- Resolution is a process to generate a clause from two clauses
- Given two clauses \((x \vee y)\) and \((-y \vee z)\), the resolvent of these two clauses is ( \(x \vee z)\)
\(-(x \vee y) \wedge(-y \vee z)\) is satisfiable iff \((x \vee y) \wedge(-y \vee z) \wedge(x \vee z)\) is satisfiable
- The resolvent is redundant

\section*{Conflict Clause Analysis (7/10)}
\begin{tabular}{|c|c|}
\hline Assignments & antecedent \\
\hline \(e=F\) ) & assumption \\
\hline \(f=F\) & -fve \\
\hline \(g=F\) \} & -gvf \\
\hline h=F & -hvg \\
\hline \(a=F\) & assumption \\
\hline \(b=T\) & bvave \\
\hline \(\mathrm{c}=\mathrm{T}\) \} DLevel= \(=2\) & cvevfv-b \\
\hline \(\mathrm{d}=\mathrm{T}\) & \(d v-b v h\) \\
\hline
\end{tabular}
a=F
-bv-cvh
(a resolvent of
\(-b v-c v-d\)
and \(d v-b v h)\)

\section*{Conflict Clause Analysis (8/10)}
\begin{tabular}{|c|c|}
\hline Assignments & antecedent \\
\hline \(e=F\) ) & assumption \\
\hline \(\mathrm{f}=\mathrm{F}\) & -fve \\
\hline \(\mathrm{g}=\mathrm{F}\) & -gvf \\
\hline \(h=F\) & -hvg \\
\hline \(a=F 7\) & assumption \\
\hline \(b=T\) & bvave \\
\hline \(\mathrm{c}=\mathrm{T}\) \} DLevel=2 & \(c v e v f v-b\) \\
\hline \(\mathrm{d}=\mathrm{T}\), & \(d v-b v h\) \\
\hline
\end{tabular}

\(-b v-c v h\)

\section*{Conflict Clause Analysis (9/10)}
\begin{tabular}{|c|c|}
\hline Assignments & antecedent \\
\hline \(e=F\) ) & assumption \\
\hline \(\mathrm{f}=\mathrm{F}\) & -fve \\
\hline \(\mathrm{g}=\mathrm{F}\) & -gvf \\
\hline \(h=F\) & -hvg \\
\hline \(a=F 7\) & assumption \\
\hline \(b=T\) & bvave \\
\hline \(\mathrm{c}=\mathrm{T}\) \} DLevel=2 & cvevfv-b \\
\hline \(\mathrm{d}=\mathrm{T}\), & \(d v-b v h\) \\
\hline
\end{tabular}

-bvevfvh learnt clause

\section*{Conflict Clause Analysis (10/10)}


\(-b v-c v-d\)
\(-b v-c v h\)
-bvevfvh

\section*{Variable State Independent Decaying Sum(VSIDS)}
- Decision heuristic to determine what variable will be assigned next
- Decision is independent from the current assignment of each variable
- VSIDS makes decisions based on activity
- Activity is a literal occurrence count with higher weight on the more recently added clauses
- MiniSAT does not consider any polarity in VSIDS
- Each variable, not literal has score

\section*{VSIDS Decision Heuristic MiniSAT style (1/8)}
- Initially, the score for each variable is 0
- First make a decision e = False
- The order between same score is unspecified.
- MiniSAT always assigns False to variables.
```

Initial constraints
(-fve) ^
(-g\veef)^
(bvave) ^
(cvevfv-b) ^
(-h\veeg)^
(dv-bvh) ^
(-bv-cv-d) ^
(cvd)

```
\begin{tabular}{|c|c|c|}
\hline Variable & Score & Value \\
\hline a & \(\mathbf{0}\) & \\
\hline b & \(\mathbf{0}\) & \\
\hline c & \(\mathbf{0}\) & \\
\hline d & \(\mathbf{0}\) & \\
\hline e & \(\mathbf{0}\) & F \\
\hline f & \(\mathbf{0}\) & \\
\hline g & \(\mathbf{0}\) & \\
\hline h & \(\mathbf{0}\) & \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (2/8)}
- f, g, h are False after BCP
\[
\begin{aligned}
& (-f \vee e) \wedge \\
& (-g \vee f) \wedge \\
& (b \vee a \vee e) \wedge \\
& (c \vee e v f \vee-b) \wedge \\
& (-h \vee g) \wedge \\
& (d \vee-b \vee h) \wedge \\
& (-b \vee-c \vee-d) \wedge \\
& (c \vee d)
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Variable & Score & Value \\
\hline a & \(\mathbf{0}\) & \\
\hline b & \(\mathbf{0}\) & \\
\hline c & \(\mathbf{0}\) & \\
\hline d & \(\mathbf{0}\) & \\
\hline e & \(\mathbf{0}\) & F \\
\hline f & \(\mathbf{0}\) & F \\
\hline g & \(\mathbf{0}\) & F \\
\hline h & \(\mathbf{0}\) & F \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (3/8)}
- \(\mathbf{a}\) is next decision variable
\begin{tabular}{|c|c|c|}
\hline Variable & Score & Value \\
\hline a & \(\mathbf{0}\) & F \\
\hline b & \(\mathbf{0}\) & \\
\hline c & \(\mathbf{0}\) & \\
\hline d & \(\mathbf{0}\) & \\
\hline e & \(\mathbf{0}\) & F \\
\hline f & \(\mathbf{0}\) & F \\
\hline g & \(\mathbf{0}\) & F \\
\hline h & \(\mathbf{0}\) & F \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (4/8)}
- b, c are True after BCP
- Conflict occurs on variable d
- Start conflict analysis
\begin{tabular}{|c|c|c|}
\hline Variable & Score & Value \\
\hline a & \(\mathbf{0}\) & F \\
\hline b & \(\mathbf{0}\) & T \\
\hline c & \(\mathbf{0}\) & T \\
\hline d & \(\mathbf{0}\) & T \\
\hline e & \(\mathbf{0}\) & F \\
\hline f & \(\mathbf{0}\) & F \\
\hline g & \(\mathbf{0}\) & F \\
\hline h & \(\mathbf{0}\) & F \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (5/8)}
- The score of variable in resolvents is increased by 1
- Even if a variable appears in resolvents two or mores increase the score just once
\begin{tabular}{|c|c|c|c|}
\hline (-fve) \(\wedge\) & a & 0 & F \\
\hline \((-g \vee f) \wedge\) & b & 1 & T \\
\hline (bvave) ^ & c & 1 & T \\
\hline \[
(-h \vee g) \wedge \quad \text { Resolvent on d }
\] & d & 0 & T \\
\hline \((d v-b v h) \xlongequal{2}-b v-c v h\) & e & 0 & F \\
\hline (-bv-cv-d) & f & 0 & F \\
\hline \((\mathrm{CVd})\) & g & 0 & F \\
\hline & h & 1 & F \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (6/8)}
- The end of conflict analysis
- The scores are decaying 5\% for next scoring
```

(-fve) ^
(-g\veef) ^
(bvave) ^
(cvevfv-b) ^
(-h\veeg)^
(dv-bvh) ^
(-bv-cv-d)^
(cvd)

```
\begin{tabular}{|c|c|c|}
\hline Variable & Score & Value \\
\hline a & \(\mathbf{0}\) & F \\
\hline b & 0.95 & T \\
\hline c & 0.95 & T \\
\hline d & \(\mathbf{0}\) & T \\
\hline e & 0.95 & F \\
\hline f & 0.95 & F \\
\hline g & \(\mathbf{0}\) & F \\
\hline h & 0.95 & F \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (7/8)}
- \(b\) is now False and \(a\) is True after BCP
- Next decision variable is c with 0.95 score

\begin{tabular}{|c|c|c|}
\hline Variable & Score & Value \\
\hline a & 0 & T \\
\hline b & 0.95 & F \\
\hline c & 0.95 & \\
\hline d & 0 & \\
\hline e & 0.95 & F \\
\hline f & 0.95 & F \\
\hline g & 0 & F \\
\hline h & 0.95 & F \\
\hline
\end{tabular}

\section*{VSIDS Decision Heuristic (8/8)}
- Finally we find a model!
```

