
(100 pts) Verify max_heapify(int x[],int i,int h_size)
by using CBMC

• x[] is an array to contain a max-heap
• i is the index to the node that may violate the max-heap property
• h_size is a total number of nodes in the max-heap:
• max_heapify makes a subtree whose root is x[i] a max heap with the following

assumptions.
Assumptions
1. A given tree satisfies the shape property
2. The right and left sub-trees of node i are max heaps, but that x[i] may be smaller than
its children
3. The size of x[] is 8.
To do list:
• Describe your assertion check routine in detail

– max_heapify should guarantee that the final subtree whose root node is x[i] should be a max heap.
– Also, max_heapify should guarantee that the other part of a tree should not change.

• Describe your environment model (i.e., constraints on input) in detail
• Describe run-time parameters of CBMC.
• Report verification results (i.e., time, memory (you can use top utility), assert

violation, size of generated SAT formula, etc).
• Also, show that your # of loop unwinding is sufficient.

• A max heap is a heap data structure created using
a binary tree with two constraints:
– The shape property: the tree is a complete binary tree;

that is, all levels of the tree, except possibly the last
one (deepest) are fully filled, and, if the last level of
the tree is not complete, the nodes of that level are
filled from left to right.

– The max-heap property: each node is greater than or
equal to each of its children according to a
comparison predicate defined for the data structure.

Max heap can be implemented using an array as follows
(note that array index starts from 1):

Index 1 2 3 4 5 6 7 8 9

value 100 19 36 17 3 25 1 2 7

/* Example code */
#include<stdio.h>
#define MAX 16
#define H_SIZE 10
#define parent(i)(i/2)
#define left(i) (2*i)
#define right(i)(2*i+1)

/* Ignore the first 0, since max heap
contents start at index 1 */

int a[MAX] = {0,16,4,10,14,7,9,3,2,8,1,};

void max_heapify(int x[],int i,int h_size){
int largest, tmp;
int l=left(i);
int r=right(i);

if (l<=h_size && x[l]>x[i]) largest=l;
else largest=i;
if(r<=h_size && x[r]>x[largest]) largest=r;
if (largest!=i) {
tmp=x[i];
x[i]=x[largest];
x[largest]=tmp;
max_heapify(x,largest,h_size);

}
}

int main(){
int i;
max_heapify(a,2,H_SIZE);
for (i=1;i<=H_SIZE;i++) printf("%d ",a[i]);
return 0;

} /* Output: 16 14 10 8 7 9 3 2 4 1 */

16
4 10

9 314 7

2 8 1

1

2 3

6 74 5

8 9 10

16
14 10

9 34 7

2 8 1

1

2 3

6 74 5

8 9 10

16
14 10

9 38 7

2 4 1

1

2 3

6 74 5

8 9 10

max_heapify(a,2,10)

	슬라이드 번호 1
	슬라이드 번호 2
	슬라이드 번호 3

