Homework:
(You may spend ~20 hours for this homework)

1. (90 pts) Write down kcov-branch-identify using Clang based on the provided template C++
file. kcov-branch-identify receives a file name of a single C file and prints the list of the
branches at source code level as they are and the total number of branches of the C file.

See the following output for the attached example-kcov.c:

$./kcov-branch-identify example-kcov.c

function: f2
If ID: O Line: 4 Col: 2 Filename: ./example-kcov.h
function: f1l
If ID: 1 Line: 19 Col: 2 Filename: example-kcov.c
function: main
If ID: 2 Line: 30 Col: 2 Filename: example-kcov.c
If ID: 3 Line: 32 Col: 9 Filename: example-kcov.c
For 1ID: 4 Line: 40 Col: 2 Filename: example-kcov.c
While ID: 5 Line: 45 Col: 2 Filename: example-kcov.c
Do ID: 6 Line: 50 Col: 2 Filename: example-kcov.c
Case ID: 7 Line: 52 Col: 4 Filename: example-kcov.c
Case ID: 8 Line: 55 Col: 4 Filename: example-kcov.c
?: ID: 9 Line: 56 Col: 9 Filename: example-kcov.c
Default ID: 10 Line: 59 Col: 4 Filename: example-kcov.c
If ID: 11 Line: 64 Col: 2 Filename: example-kcov.c
?: ID: 12 Line: 64 Col: 7 Filename: example-kcov.c
ImpDef. ID: 13 Line: 68 Col: 2 Filename: example-kcov.c
Case ID: 14 Line: 69 Col: 3 Filename: example-kcov.c
Case ID: 15 Line: 72 Col: 3 Filename: example-kcov.c
Do ID: 16 Line: 77 Col: 2 Filename: example-kcov.c
If ID: 17 Line: 77 Col: 2 Filename: example-kcov.c
Total number of branches: 30

Note 1. We count each case as one branch (i.e., considering switch () {..} has multiple outgoing
edges). Also, we count (implicit) default statement as one branch regardless of whether default
exists or not. A line and a column of an implicit default is those of corresponding switch ().

2. (10 pts) Print out the branches in the attached grep source code file (i.e., grep.c) by using your
kcov-branch-identify. Submit the output of your kcov-branch-identify on
grep.c.

Note 1. If your program fails to find header files of a target program (grep.c), you have to modify
include paths (line 137) in the initialization part of the kcov-branch-identify.cpp template file.
Note 2. You can ignore various Clang warnings.

Note 3. Your program should print out functions which have no branches.

Note 4. The total # of branches of the grep C file: > 3000

3. (90 pts) Write down kcov using Clang. You have to submit your kcov code.

A. kcov receives a file name of a preprocessed single C file <f>.1i (which is generated from
non-preprocessed C file <f>.c using the below command) and generates the instrumented
version <f>-cov . c to measure branch coverage of <f>.c through testing.

i. A preprocessed C file can be obtained by gcc -E <filename>.c -o <filename>.1i
ii. Note. If you give a complex C file like grep.c w/o preprocessing to kcov as an input, kcov
may crash due to the high complexity of handling source code location by Clang Rewriter.

B. When <f>-cov.c is compiled and executed 1% time, <f>-cov.c generates a coverage
measurement file coverage.dat. After then, <f>-cov.c updates coverage.dat
through testing <f>-cov.c. The format of coverage.dat is as follows

Line# [# of execution |# of execution | conditional
|of then branch |of e1se branch | expression
1453 0 0 errnum

1474 0 7 size && !result

1484 3 0 ptr

1488 0 0 size && !result

6950 0 0 (end = memchr (beg + len, '\n', (buf + size) -
(beg + len))) !'= 0

6955 0 0 beg > buf && beg[-1] != '"\n'

Covered: 581 / Total: 3101 = 18.735892%

Notel. If one line has multiple branches (i.e., nested if statements), you can print out these branches in
separate lines with the same line id

Note2. The # of execution of else branch of case should be always 0 (i.e., meaningless)

Note3. For a switch statement, your program should print out case and (implicit) default
statements. A conditional expression of case statement is a corresponding case value and that of
default is “'default”

4. (10 pts) Print out the coverage measurement file of the preprocessed grep C code with the following
test cases (execution commands) where grep. c is the grep source code file used for your HW (not
preprocessed C file)

./grep —n "if" grep.c
./grep —-E "[0-9][0-9]+" grep.c
./grep -E “[[:digit:]]1[[:alpha:]]” grep.c

