
Necessity of Automated SW Testing
- Fight the Complexity of SW

Moonzoo Kim

2

SW Testing is Very Complex and Difficult Task

The ratio of program code written for SW products and test harness is 1:3

The ratio of time spent for developing and testing SW products is 1:3

“… We have as many testers as we have developers. Testers basically
test all the time, and developers basically are involved in the testing
process about half the time…”

“…The test cases are unbelievably expensive; in fact, there's more lines of
code in the test harness than there is in the program itself. Often that's a
ratio of about three to one.”

Object-Oriented Programming, Systems Languages, and Applications, Seattle, Washington, 2002

3

Summary: What is (the essense of) Software?

1. Software = a large set of unique executions

2. SW testing = to find an execution that violates a given
requirement among the large set

• A human brain is poor at enumerating all executions
of a target SW, but computer is good at the task

3. Automated SW testing
= to enumerate and analyze the executions of

SW systematically (and exhaustively if possible)

Static SW Code vs. Dynamic SW Executions

int x=0, y=0, z =0;

void Thread1()

{x=y+1; y=z+1; z= x+1;}

void Thread2()

{y=z+1; z=x+1; x=y+1;}

Thread1()

Thread2()
x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

5
5

Software Development Cycle

A SW Development Framework for SW with High Assurance

Formal
require-

ment
Spec.

Formal
system

modeling

Model
analysis/

verification

Model-
assisted

code
generation

Model-
based
testing

Runtime
monitoring

and
checking

System
design

Requirement
analysis

Design
analysis

Implement-
ation

Testing Monitoring

• A practical end-to-end formal framework for software
development

Software v.s. Magic Circle (마법진)

6/58

• Written by a software
developers line by line

• Requires programming
expertise

• SW executes complicated
tasks which are far more
complex than the code
itself

• The software often
behaves in unpredicted
ways and crash occurs

• Written by a human
magician line by line

• Requires magic spell
knowledge

• Summoned monsters
are far more powerful
than the magic spell
itself

• The summoned demon
is often uncontrollable
and disaster occurs

네이버웹툰 “그 판타지세계에서사는법“ by 촌장

7

Requirement Specification Problems

• Ambiguity
• Expression does not have unique meaning, but can be interpreted as several

different meaning.
• Ex. For a natural number input, do X

• What if a 0 is given? Is 0 a natural number?

• Incompleteness
• Relevant issues are not addressed , e.g. what to do when user errors occur or

software faults show.
• Ex. For a positive integer input, do Y

• What if a negative input is given?

• Inconsistency
• Contradictory requirements in different parts of the specification.

• Ex. For a non-negative input, execute Z, and for a non-positive input, do
not execute Z

• What if 0 is given?

8

Example (retail chain management software)

• If the sales for the current month are below the
target sales, then a report is to be printed,

• unless the difference between target sales and actual
sales is less than half of the difference between target
sales and actual sales in the previous month

• or if the difference between target sales and actual
sales for the current month is under 5 percent.

9

Example 2: Leap year (윤년) detection

• The Februray of a leap year has 29th day (i.e., an extra day).

• Given year, print “Leap year” if the following conditions hold:

a) if a year is divisible by 4, it is a leap year. Otherwise, it is not.

b) if a year is divisible by both 4 and 100, it is not a leap year.

c) if a year is divisible by 400, it is a leap year.

• 예시:

isLeapYear(2008)

isLeapYear(2100)

isLeapYear(2021)

isLeapYear(2000)

Leap year

Not a leap year

Not a leap year

Leap year

Ex. Testing a Triangle Decision Program

Moonzoo Kim /1110

Input : Read three integer values from the command line.
The three values represent the length of the sides of a
triangle.

Output : Tell whether the triangle is

• Scalene (부등변삼각형) : no two sides are equal

• Isosceles (이등변삼각형) : exactly two sides are equal

• Equilateral(정삼각형) : all sides are equal

Create a Set of Test Cases for this program

(3,4,5), (2,2,1), (1,1,1) ?

Precondition (Input Validity) Check

Moonzoo Kim /1111

• Condition 1: a > 0, b > 0, c > 0
• Condition 2: a < b + c

• Ex. (4, 2, 1) is an invalid triangle
• Permutation of the above condition

• a < b +c
• b < a + c
• c < a + b

• What if b + c exceeds 232 (i.e. overflow)?
• long v.s. int v.s. short. v.s. char

• Developers often fail to consider implicit preconditions
• Cause of many hard-to-find bugs

12

Test Cases for the Triangle Decision

“Software Testing a
craftsman’s approach”
2nd ed by
P.C.Jorgensen

int triangle(int a, int b, int c) {
int match=0, result=-1;

1: if(a==b) match=match+1;
3: if(a==c) match=match+2;
5: if(b==c) match=match+3;
7: if(match==0) {
8: if(a+b <= c) result=2;
9: else if(b+c <= a) result=2;
10: else if(a+c <= b) result =2;

else result=3;
} else {

13: if(match == 1) {
14: if(a+b <= c) result =2;

else result=1;
} else {

16: if(match ==2) {
17: if(a+c <=b) result = 2;

else result=1;
} else {

18: if(match==3) {
19: if(b+c <= a) result=2;

else result=1;
} else result = 0;

} }}
return result; }

13

• # of test cases required?

① 4

② 11

③ 50

④ 100

• # of feasible unique execution
paths?

• 11

• The goal of testing

• Generate 11 test cases that
exercise the 11 unique
execution paths

Test Cases for the Triangle Decision

“Software Testing a
craftsman’s approach”
2nd ed by
P.C.Jorgensen

14

“Software Testing
a craftsman’s
approach” 2nd ed
by P.C.Jorgensen

Test Cases for the Triangle Decision

5
1 4

7

3

2

3 8

11
9
10

6

a,b,c = 1,1,1:match=6:result=0:p1

a,b,c = 3,2,2:match=3:result=1:p2
a,b,c = 2,1,2:match=2:result=1:p3
a,b,c = 2,2,1:match=1:result=1:p4

a,b,c = 2,1,1:match=3:result=2:p5
a,b,c = 1,2,1:match=2:result=2:p6
a,b,c = 1,1,2:match=1:result=2:p7

a,b,c = 2,1,3:match=0:result=2:p8
a,b,c = 3,2,1:match=0:result=2:p9
a,b,c = 2,3,1:match=0:result=2:p10

a,b,c = 4,3,2:match=0:result=3:p11

15

“Software Testing
a craftsman’s
approach” 2nd ed
by P.C.Jorgensen

Test Cases for the Triangle Decision

5
1 4

7

3

2

3 8

11
9
10

6

a) a≠b /\ a≠b /\ a≠b (match=0)
b) a=b (match=1)
c) a=c (match=2)
d) b=c (match=3)
e) a=b /\ a=b /\ a=b (match=6)

1) match≠0 /\ match≠1 /\ match≠2 /\ match≠3 (EQ)
2) match≠0 /\ match≠1 /\ match≠2 /\ match=3

/\ b+c > a (ISO)
3) match≠0 /\ match≠1 /\ match≠2 /\ match=3

/\ b+c ≤ a (NTR)
4) match≠0 /\ match≠1 /\ match=2 /\ a+c > b (ISO)
5) match≠0 /\ match≠1 /\ match=2 /\ a+c ≤ b (NTR)
6) match≠0 /\ match=1 /\ a+b > c (ISO)
7) match≠0 /\ match=1 /\ a+b ≤ c (NTR)
8) match=0 /\ a+b ≤ c (NTR)
9) match=0 /\ a+b > c /\ b+c ≤ a (NTR)
10) match=0 /\ a+b > c /\ b+c > a /\ a+c ≤ b (NTR)
11) match=0 /\ a+b > c /\ b+c > a /\ a+c > b (SCL)

Cartesian
product

16

• # of test cases required?

① 4

② 11

③ 50

④ 100

• # of feasible unique execution
paths?

• 11

• The goal of testing

• Generate 11 test cases that
exercise the 11 unique
execution paths

“Software Testing
a craftsman’s
approach” 2nd ed
by P.C.Jorgensen

Test Cases for the Triangle Decision

17

More Complex Testing Situations (1/3)

• Software is constantly changing

• What if “integer value” is relaxed to “floating value” ?

• Round-off errors should be handled explicitly

• What if new statements S1 … Sn are added to check
whether the given triangle is a right angle triangle (직각삼

각형)?

• Will you test all previous tests again?

• How to create minimal test cases to check the
changed parts of the target program

18

More Complex Testing Situations (2/3)

• Regression testing is essential

• How to select statements/conditions affected by the revision
of the program?

• How to create test cases to cover those
statements/conditions?

• How to create efficient test cases?

• How to create a minimal set of test cases (i.e. # of test
cases is small)?

• How to create a minimal test case (i.e. causing minimal
execution time)?

• How to reuse pre-existing test cases?

19

More Complex Testing Situations (3/3)

• However, conventional coverage is not complete

• Ex. int adder(int x, int y) { return 3;}

• Test case (x=1,y=2) covers all statements/branches of
the target program and detects no error

• In other words, all variable values must be explored for
complete results

• Formal verification aims to guarantee completeness

• Model checking analyzes all possible x, y values through 264

(=232 x 232) cases

• However, model checking is more popular for debugging,
not verification

20

Concurrency

• Concurrent programs have very high complexity

due to non-deterministic scheduling

• Ex. int x=0, y=0, z =0;

void Thread1() {x=y+1; y=z+1; z= x+1;}

Void Thread2() {y=z+1; z=x+1; x=y+1;}

• Total 20 interleaving scenarios

= (3+3)!/(3!x3!)

• However, only 11 unique outcomes

• assert(x+y+z > 5)???

• assert(x+y+z < 15)???

Thread1()

Thread2()
x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

Trail1: 2,1,2
Trail2: 2,1,3
Trail3: 2,2,3
Trail4: 2,3,3
Trail5: 2,4,3
Trail6: 3,2,3

Trail7: 3,2,4
Trail8: 4,3,2
Trail9: 4,3,5
Trail10: 5,4,3
Trail11: 5,4,6

21

An Example of Mutual Exclusion Protocol

char cnt=0,x=0,y=0,z=0;

void process() {
char me=_pid +1; /* me is 1 or 2*/

again:
x = me;
If (y ==0 || y== me) ;
else goto again;

z =me;
If (x == me) ;
else goto again;

y=me;
If(z==me);
else goto again;

/* enter critical section */
cnt++;
assert(cnt ==1);
cnt --;
goto again;

}
Mutual

Exclusion
Algorithm

Critical
section

Software
locks

Process 0

x = 1
If(y==0 || y == 1)

z = 1
If(x == 1)
y = 1
If(z == 1)
cnt++

Process 1
x = 2
If(y==0 || y ==2)
z = 2
If(x==2)

y=2
If (z==2)
cnt++

Counter
Example

Violation detected !!!

22

More Concurrency Bugs

class Account_BR {
Lock m;
double balance;
// INV: balance should be non-negative

double getBalance() {
double tmp;

1: lock(m);
2: tmp = balance ;
3: unlock(m);
4: return tmp; }

void withdraw(double x){
/*@atomic region begins*/

11: if (getBalance() >= x){
12: lock(m);
13: balance = balance – x;
14: unlock(m); }

/*@atomic region ends*/
... }

-th2 : withdraw(10)-
...

12: lock(m);
13: balance=10–10;
14: unlock(m);

[Initially, balance:10]
-th1: withdraw(10)-

11:if(getBalance()>=10)
getBalance()
1:lock(m);
2:tmp = balance;
3:unlock(m);
4:return tmp;

12: lock(m);
13: balance=0 – 10;
14: unlock(m);

(a) Buggy program code

(b) Erroneous execution

The invariant is violated as
balance becomes -10.

operation block bi

class Account_DR {
double balance;
// INV:balance should be always non-negative

void withdraw(double x) {
1: if (balance >= x) {
2: balance = balance–x;}

...
}}

[Initially, balance:10]
-th1: withdraw(10)-

1: if(balance >= 10)

2: balance = 0 – 10;

-th2: withdraw(10)-
1: if(balance >= 10)

2: balance = 10-10;

(a) Buggy program code

(b) Erroneous execution

The invariant is violated as
balance becomes -10.

• Data race bugs • Atomicity bugs

Static SW Code vs. Dynamic SW Executions

int x=0, y=0, z =0;

void Thread1()

{x=y+1; y=z+1; z= x+1;}

void Thread2()

{y=z+1; z=x+1; x=y+1;}

Thread1()

Thread2()
x=y+1 y=z+1 z=x+1

x=y+1

y=z+1

z=x+1

24

Formal Analysis of Software

• 2007 ACM Turing Awardees
• Prof. Edmund Clarke, Dr. Joseph

Sipfakis, Prof. E. Allen Emerson
• For the contribution of migrating

from pure model checking research
to industrial reality

• 2013 ACM Turing Awardee
• Dr. Leslie Lamport
• For fundamental contributions to the theory and

practice of distributed and concurrent systems
• Happens-before relation, sequential consistency,

Bakery algorithm, TLA+, and LaTeX

24

25

Significance of Automated SW Testing

• Software has become more ubiquitous and more complex at the same time

Human resources are becoming
less reliable and more expensive for
highly complex software

Computing resources are becoming
ubiquitous and cheap
Amazon AWS price: you can use thousands of
CPUs @ 0.03$/hr for 2.5Ghz Quad-core CPU

› To-do: Develop automated and scientific software testing tools to
utilize computing resource effectively and efficiently

26

Summary: What is (the essense of) Software?

1. Software = a large set of unique executions

2. SW testing = to find an execution that violates a given
requirement among the large set

• A human brain is poor at enumerating all executions
of a target SW, but computer is good at the task

3. Automated SW testing
= to enumerate and analyze the executions of

SW systematically (and exhaustively if possible)

	슬라이드 번호 1
	SW Testing is Very Complex and Difficult Task
	Summary: What is (the essense of) Software?
	Static SW Code vs. Dynamic SW Executions
	Software Development Cycle
	 Software v.s. Magic Circle (마법진)
	Requirement Specification Problems
	Example (retail chain management software)
	Example 2: Leap year (윤년) detection
	Ex. Testing a Triangle Decision Program
	Precondition (Input Validity) Check
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	More Complex Testing Situations (1/3)
	More Complex Testing Situations (2/3)
	More Complex Testing Situations (3/3)
	Concurrency
	An Example of Mutual Exclusion Protocol
	More Concurrency Bugs
	Static SW Code vs. Dynamic SW Executions
	Formal Analysis of Software
	Significance of Automated SW Testing
	Summary: What is (the essense of) Software?

