
Mutation Testing

The original slides are taken from Chap. 9 of Intro. to SW Testing 
2nd ed by Ammann and Offutt

Moonzoo Kim
School of Computing 

KAIST



Mutation Testing

Operators modify a program under test to create 
mutant programs
Mutant programs must compile correctly  
Mutants are not tests, but used to find good tests

Once mutants are defined, tests must be found to 
cause mutants to fail when executed
 This is called “killing mutants”

Most slides are taken from the text book “Introduction to Software Testing” by P.Ammann and J.Offutt



Killing Mutants

 If mutation operators are designed well, the resulting tests will be
very powerful

 Different operators must be defined for different programming languages and 
goals
 Testers can keep adding tests until all mutants have been killed

 Dead mutant : A test case has killed it
 Trivial mutant : Almost every test can kill it
 Equivalent mutant : No test can kill it (equivalent to original program)
 Stubborn mutant: Almost no test can kill it (a.k.a hard-to-kill mutants)

3

Given a mutant m ∈M for a ground string program P and a test t, t
is said to kill m if and only if the output of t on P is different from 
the output of t on m.



Program-based Grammars

4

Original Method

int Min (int A, int B)
{

int minVal;
minVal = A;
if (B < A)
{

minVal = B; 
}
return (minVal);

} // end Min

With Embedded Mutants

int Min (int A, int B)
{

int minVal;
minVal = A;

∆ 1  minVal = B;
if (B < A)

∆ 2  if (B > A)
∆ 3  if (B < minVal)

{
minVal = B;

∆ 4          Bomb ();
∆ 5          minVal = A;
∆ 6          minVal = failOnZero (B);

}
return (minVal);

} // end Min

6 mutants

Each represents a 
separate program

Replace one variable 
with another

Changes operator

Immediate runtime 
failure … if reached

Immediate runtime 
failure if B==0 else 
does nothing



Syntax-Based Coverage Criteria

5

Mutation Coverage (MC) : For each m ∈ M, TR contains exactly 
one requirement, to kill m.

• The RIP model 
• Reachability : The test causes the faulty statement to be 

reached (in mutation – the mutated statement)
• Infection : The test causes the faulty statement to result in an 

incorrect state
• Propagation : The incorrect state propagates to incorrect 

output
• The RIP model leads to two variants of mutation coverage … 



Strong v.s. Weak Mutants

6

1) Strongly Killing Mutants:
Given a mutant m ∈ M for a program P and a test t, t is said to 
strongly kill m if and only if the output of t on P is different from 
the output of t on m

2) Weakly Killing Mutants:
Given a mutant m ∈ M that modifies a location l in a program     P,  
and a test t, t is said to weakly kill m if and only if the state of the 
execution of P on t is different from the state of the execution of 
m immediately on t after l

• Weakly killing satisfies reachability and infection, but not 
propagation



Equivalent Mutation Example
 Mutant 3 in the Min() example is equivalent:

7

minVal = A;
if (B < A)

∆ 3  if (B < minVal)

• The infection condition is “(B < A) != (B < minVal)”

• However, the previous statement was “minVal = A”
– Substituting, we get: “(B < A) != (B < A)”
– This is a logical contradiction !

• Thus no input can kill this mutant



Strong Versus Weak Mutation

1     boolean isEven (int X)
2     {
3          if (X < 0)
4               X = 0 - X;
∆ 4            X = 0;
5           if (double) (X/2) == ((double) X) / 2.0
6               return (true);
7           else
8               return (false);
9     }

8

Reachability : X < 0

Infection : X != 0

(X = -6) will kill mutant 4 
under weak mutation

Propagation :

((double) ((0-X)/2) == ((double) 0-X) / 2.0)

!=   ((double) (0/2) == ((double) 0) / 2.0)

That is, X is not even …

Thus (X = -6) does not kill the mutant under 
strong mutation



Testing Programs with Mutation

9

Input test 
method

Prog Create 
mutants

Run T 
on P

Run mutants:
• schema-
based
• weak
• selective

Eliminate 
ineffective 

TCs

Generate 
test cases

Run 
equivalence 

detector

Threshold   
reached   ?

no

P (T) 
correct 

?
yesFix 

P
no



Why Mutation Testing Works  

 Also known as “Coupling Effect”
 “a test data set that distinguishes all programs with simple faults is so sensitive that it 

will also distinguish programs with more complex faults”
 R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing 

programmer.  Computer, 11(4), April 1978.

 The mutants guide the tester to an effective set of tests
 A very challenging problem : 

 Find a fault and a set of mutation-adequate tests that do not find the fault

 Of course, this depends on the mutation operators … 
10

Fundamental Premise of Mutation Testing

If the software contains a fault, there will usually
be a set of mutants that can only be killed by a
test case that also detects that fault



Designing Mutation Operators
 At the method level, mutation operators for different programming languages 

are similar
 Mutation operators do one of two things :

 Mimic typical programmer mistakes ( incorrect variable name )
 Encourage common test heuristics ( cause expressions to be 0 )

 Researchers design lots of operators, then experimentally select the most 
useful

11

Effective Mutation Operators
If tests that are created specifically to kill mutants created by
a collection of mutation operators O = {o1, o2, …} also kill
mutants created by all remaining mutation operators with
very high probability, then O defines an effective set of
mutation operators



Mutation Operators

12

Each occurrence of one of the arithmetic operators +,－,*,／, and % is 
replaced by each of the other operators. In addition, each is replaced by the 
special mutation operators leftOp, and rightOp.

2. AOR –– Arithmetic Operator Replacement:

Each arithmetic expression (and subexpression) is modified by the functions 
abs(), negAbs(), and failOnZero().

1. ABS –– Absolute Value Insertion:

Examples:
a = m * (o + p);

∆1   a = abs (m * (o + p));
∆2   a = m * abs ((o + p));
∆3   a = failOnZero (m * (o + p));

Examples:
a = m * (o + p);

∆1   a = m + (o + p);
∆2   a = m * (o * p);
∆3   a = m leftOp (o + p);



13

Each occurrence of one of the relational operators (<, ≤, >, ≥, =, ≠) is replaced 
by each of the other operators and by falseOp and trueOp.

3. ROR –– Relational Operator Replacement:

Examples:
if (X <= Y)

∆1   if (X > Y)
∆2   if (X < Y)
∆3   if (X falseOp Y)  // always returns false

Each occurrence of one of the logical operators (and - &&, or - || , and with 
no conditional evaluation - &, or with no conditional evaluation - |, not 
equivalent - ^) is replaced by each of the other operators; in addition, each is 
replaced by falseOp, trueOp, leftOp, and rightOp.

4. COR –– Conditional Operator Replacement:

Examples:
if (X <= Y && a > 0)

∆1   if (X <= Y || a > 0)
∆2   if (X <= Y leftOp a > 0) // returns result of left clause



5. SOR –– Shift Operator Replacement:
Each occurrence of one of the shift operators <<, >>, and >>> is replaced by 
each of the other operators. In addition, each is replaced by the special 
mutation operator leftOp.

Each occurrence of one of the logical operators (bitwise and - &, bitwise or
- |, exclusive or - ^) is replaced by each of the other operators; in addition, 
each is replaced by leftOp and rightOp.

6. LOR –– Logical Operator Replacement:

Examples:
byte b = (byte) 16;
b = b >> 2;

∆1   b = b << 2;
∆2   b = b leftOp 2; // result is b

Examples:
int a = 60;    int b = 13;
int c = a & b;

∆1  int c = a | b;
∆2  int c = a rightOp b; // result is b



15

Each occurrence of one of the assignment operators (+=, -=, *=, /=, %=, &=, 
|=, ^=, <<=, >>=, >>>=) is replaced by each of the other operators.

7. ASR –– Assignment Operator Replacement:

8. UOI –– Unary Operator Insertion:
Each unary operator (arithmetic +, arithmetic -, conditional !, logical ~) is 
inserted in front of each expression of the correct type.

Examples:
a = m * (o + p);

∆1   a += m * (o + p);
∆2   a *= m * (o + p);

Examples:
a = m * (o + p);

∆1   a = m * -(o + p);
∆2   a = -(m * (o + p));



16

Each unary operator (arithmetic +, arithmetic -, conditional !, logical~) is 
deleted.

9. UOD –– Unary Operator Deletion:

Examples:
if !(X <= Y && !Z)

∆1   if (X > Y && !Z)
∆2   if !(X < Y && Z)

Each variable reference is replaced by every other variable of the appropriate 
type that is declared in the current scope.

10. SVR –– Scalar Variable Replacement:

Examples:
a = m * (o + p);

∆ 1   a = o * (o + p);
∆ 2   a = m * (m + p);
∆ 3   a = m * (o + o);
∆ 4   p = m * (o + p);



17

11. BSR –– Bomb Statement Replacement:
Each statement is replaced by a special Bomb() function.

Example:
a = m * (o + p);

∆1   Bomb() // Raises exception when reached



Summary : Subsumption of Other Criteria

 Mutation is widely considered the strongest test criterion
 And most expensive !
 By far the most test requirements (each mutant)
 Not always the most tests

 Mutation subsumes other criteria by including specific mutation operators
 Subsumption can only be defined for weak mutation – other criteria impose 

local requirements, like weak mutation
 Node coverage
 Edge coverage
 Clause coverage
 All-defs data flow coverage

 Reference:
 An Analysis and Survey of the Development of Mutation Testing by Y.Jia et al.

 IEEE Transactions on Software Engineering  Volume: 37 Issue: 5
 Design Of Mutant Operators For The C Programming Language by H.Agrawal et al.

 Technical report

18



Bug Observability/Detection Model:  
Reachability, Infection, Propagation, and 
Revealation (RIPR)

 Terminology
 Fault: static defect in a 

program text (a.k.a a bug)
 Error: dynamic 

(intermediate) behavior 
that deviates from its 
(internal) intended goal
 A fault causes an error (i.e. 

error is a symptom of fault)
 Failiure: dynamic 

behavior which violates a 
ultimate goal of a target 
program
 Not every error leads to 

failure due to error masking 
or fault tolerance

 Graph coverage
 Test requirement satisfaction == Reachability

 the fault in the code has to be reached  

 Logic coverage
 Test requirement satisfaction == Infection

 the fault has to put the program into an error state. 
 Note that a program is in an error state does not mean 

that it will always produce the failure  

Mutation coverage 
 Test requirement satisfaction == Propagation

 the program needs to exhibit incorrect outputs  

 Furthermore, test oracle plays critical role 
to reveal failure of a target program 
(Revealation)


	Mutation Testing
	Mutation Testing
	Killing Mutants
	Program-based Grammars
	Syntax-Based Coverage Criteria
	Strong v.s. Weak Mutants
	Equivalent Mutation Example
	Strong Versus Weak Mutation
	Testing Programs with Mutation
	Why Mutation Testing Works  
	Designing Mutation Operators
	Mutation Operators
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	Summary : Subsumption of Other Criteria
	Bug Observability/Detection Model:  �Reachability, Infection, Propagation, and Revealation (RIPR)

