
.
CS Dept. KAIST1

Software Development Cycle

A SW Development Framework for SW with High Assurance

Formal
require-

ment
Spec.

Formal
system

modeling

Model
analysis/

verification

Model-
assisted

code
generation

Model-
based
testing

Runtime
monitoring

and
checking

System
design

Requirement
analysis

Design
analysis

Implement-
ation

Testing Monitoring

http://www.kaist.ac.kr/main2.html

SW Development and Testing Model
(a.k.a. V model)

Moonzoo Kim
Provable SW Lab/422

Manual
Labor

Abstraction

Foundation of Software Testing

Multiple targets for software testing
1. Does the test cases represent the requirement spec correctly?

 Scenario based testing (black-box testing)
2. Is the design spec implemented as program correctly?

Model-based testing (grey-box testing)
3. Does the program satisfy test cases correctly?

 Code-based testing (white-box testing)

2022-09-06
3

Spec

Program Test case

• A pair of requirement spec and
system design spec

3. execution

• A pair of test input and expected test
output for the input

• Code that implements the system
specification and satisfies the
requirements

Test
oracle

Black Box Testing

Moonzoo Kim /114

• A main goal of testing is to generate multiple test cases,
one of which may reveal a bug.

• Black box testing concerns only input/output of a target
program (i.e., ignore program code)
– Ex1. Requirement specification based testing
– Ex2. Random (input generation) testing
– Ex3. Category partitioning method
– Ex4. T-way testing

• Advantage of black box testing
– Intuitive and simple
– Requires little expertise on program/code analysis techniques
– Requires less effort compared to white-box testing

• cheaper but less effective

SW
Reliability

SW Testing Cost

Various SW Testing Techniques w/ Different Cost
and Effectiveness

Rand.
Testin

g

Req. based
Testing

Equiv.
Partition.
Testing

T-way
Testing

Stmt.
Testing

Branch
Testing

Concolic
Testing

Model
Checking

Blackbox Testing

Whitebox Testing

참고. 테스팅국어사전
http://dic.sten.or.kr/

Search-
based

Testing

도리의디지털라이프블로그에서발췌/편집
http://blog.skby.net/%EB%B8%94%EB%9E%9
9%EB%B0%95%EC%8A%A4-
%ED%85%8C%EC%8A%A4%ED%8A%B8-
%ED%99%94%EC%9D%B4%ED%8A%B8%
EB%B0%95%EC%8A%A4-
%ED%85%8C%EC%8A%A4%ED%8A%B8/

Requirement based Blackbox Testing VS
Logic based Whitebox Testing

Black Box Test White Box Test

Def.
Functional test based on the

requirement specification
Logical analysis based on

target source code

View
point

User Developer

Bug
detection
criteria

Interface and/or performance
problem

Logical problems

Verification &
Validation

level
High (user) Low (testing)

Target bugs Observable external errors
Internal errors due to

logic problem, uncovered
stmt.

Technique
Category partition, boundary

value analysis, etc.
Loop, control structure

test

Bug
detection

ability
Low High

of TC Small Large

Application Beta test Alpha test

If a requirement is specified as an assert statement
requirement can be tested through whitebox texting

http://blog.skby.net/%EB%B8%94%EB%9E%99%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8-%ED%99%94%EC%9D%B4%ED%8A%B8%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8/

Example of Blackbox Testing Technique:

The Category-Partition Method for Specifying and
Generating Functional Tests

(Thomas J. Ostrand and Marc J.Balcer [CACM,1988])

The original slides from Prof. Shmuel Sagiv’s lecture notes
msagiv@post.tau.ac.il

mailto:%20msagiv@post.tau.ac.il

Content:
• Introduction.
• The category-partition method:

- characteristics.
- the method.
- examples.

• Other methods.

The goal of functional testing

• To find discrepancies between the actual beha
vior of the implemented system’s function and
the desired behavior as described in the syste
m’s functional specification.

How to achieve this goal ?

• Tests have to be execute for all the system fun
ctions.

• Tests have to be designed to maximize the cha
nces of finding errors in the software.

Functional test can be derived from 3 sour
ces:
1. The software specification.

2. Design information.

3. The code itself.

Partition - The standard approach

• The main idea is to partition the input domain
of function being tested, and then select test da
ta for each class of the partition.

• The problem of all the existing techniques is the
lack of systematic.

a

i
y

1 3
7

z p
q

2 16
4

p1 p2

p3 p4

Input domain

A strategy for test case generation

1. Transform the system’s specification to be
more concise and structured.

2. Decompose the specification into functional unit
- to be tested independently.

3. Identify the parameters and environment
conditions.

A strategy for test case generation (cont)

4. Find categories that characterize each paramet
er and environment condition.

5. Every category should be partitioned into distin
ct choices .

⇓

formal test specification

A strategy for test case generation (cont)

6.

⇓

⇓

test frames - set of choices, one from

each category.

test cases - test frame with specific

values for each choices.

test scripts - sequence of test cases.

?

Example
Command: find

Syntax: find <pattern> <file>

Function: The find command is used to locate one or

more instance of a given pattern in a text file. All lines in the file that contain the
pattern are written to standard output. A line containing the pattern is written
only once, regardless of the number of times the pattern occurs in it.

The pattern is any sequence of characters whose length does not exceed the ma
ximum length of a line in the file .To include a blank in the pattern, the entire p
attern must be enclosed in quotes (“).To include quotation mark in the pattern ,
two quotes in a row (“ “) must be used.

Example:
find john myfile

display lines in the file myfile which contain john

find “john smith” in myfile
display lines in the file myfile which contain john smith

find “john”” smith” in myfile
display lines in the file myfile which contain john” smith

Categories
Parameters:

Pattern size:
empty
single character
many character
longer than any line in the file

Quoting:
pattern is quoted

pattern is not quoted
pattern is improperly quoted

Embedded blanks:
no embedded blank

one embedded blank
several embedded blanks

Embedded quotes:
no embedded quotes

one embedded quotes
several embedded quotes

File name:
good file name
no file with this name
omitted

Environments:
Number of occurrence of pattern in file:

none
exactly one
more than one

Pattern occurrences on target line:
one
more than one

Total Tests frames:
1944 (=4*3*3*3*3*3*2)

4

3

3

3

3

3

2

Adding Constraints between Categories
to Reduce #of TC’S

Parameters:
Pattern size:

empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty]

longer than any line in the file [property NonEmpty]

Quoting:
pattern is quoted [property Quoted]

pattern is not quoted [if NonEmpty]
pattern is improperly quoted [if NonEmpty]

Embedded blanks:
no embedded blank [if NonEmpty]

one embedded blank [if NonEmpty and Quoted]
several embedded blanks [if NonEmpty and Quoted]

Embedded quotes:
no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]
several embedded quotes [if NonEmpty]

File name:
good file name
no file with this name
omitted

Environments:
Number of occurrence of pattern in file:

none [if NonEmpty]
exactly one [if NonEmpty] [property Match]
more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

Total Tests frames:
678

Parameters:
Pattern size:

empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty]

longer than any line in the file [error]

Quoting:
pattern is quoted [property quoted]

pattern is not quoted [if NonEmpty]
pattern is improperly quoted [error]

Embedded blanks:
no embedded blank [if NonEmpty]

one embedded blank [if NonEmpty and Quoted]
several embedded blanks [if NonEmpty and Quoted]

Embedded quotes:
no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]
several embedded quotes [if NonEmpty]

File name:
good file name
no file with this name [error]
omitted

Environments:
Number of occurrence of pattern in file:

none [if NonEmpty]

exactly one [if NonEmpty] [property Match]

more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

Total Tests frames:
125

Total Tests frames:
125

White Box Testing (1/2)

Moonzoo Kim /1123

• White box testing concerns program code itself
• Many different viewpoints on “program code”

– program code as a graph (i.e., structural coverage)
– program code as a set of logic formulas (i.e., logical coverage)
– program code as a set of execution paths (i.e.,

behavioral/dynamic coverage)
• Advantages:

– More effective than blackbox testing in general
– Can measure the testing progress quantitatively based on

coverage achieved
• Should be used with blackbox testing together for maximal

bug detection capability
– Blackbox testing and whitebox testing often explore different

segments of target program space

White Box Testing (2/2)

• Coverage is a good predictor/indicator of testing
effectiveness
– Utilizing correlation between structural coverage and

fault detection ability

Fault
finding

Coverage

coverage
metric B

coverage
metric C

coverage
metric A

Bug Observability/Detection Model:
Reachability, Infection, Propagation,

and Revelation (RIPR)
• Terminology

– Fault: static defect in a
program text (a.k.a a bug)

– Error: dynamic
(intermediate) behavior
that deviates from its
(internal) intended goal

• A fault causes an error (i.e.
error is a symptom of fault)

– Failiure: dynamic
behavior which violates
a ultimate goal of a
target program

• Not every error leads to
failure due to error
masking or fault tolerance

 Graph coverage
 Test requirement satisfaction == Reachability

 the fault in the code has to be reached

 Logic coverage
 Test requirement satisfaction

== Reachability +Infection
 the fault has to put the program into an error state.

 Note that a program is in an error state does not mean that
it will always produce the failure

 Mutation coverage
 Test requirement satisfaction

== Reachability +Infection + Propagation
 the program needs to exhibit incorrect outputs

 Furthermore, test oracle plays critical role to
reveal failure of a target program (Revelation)

26

사용자관점의테스트방법, Black Box Test

기법 설명

동등분할기법
(Equivalence
Partitioning

프로그램의입력도메인을테스트케이스가산출될수
있는데이터클래스로분류하는방법

경계값분석기법
(Boundary

Value Analysis)

입력조건의중간값보다경계값에서에러가발생될
확률이높다는점을이용하여테스트케이스를생성

오류예측기법
(Error Guessing)

각시험기법들이놓치기쉬운오류들을감각및경험으
로찾아보는방법

원인결과
그래프기법

(Cause Effect
Graph)

입력데이터간관계가출력에미치는영향을그래프로
표현하여오류를발견하도록함

의사결정
테이블테스팅

논리적조건이나상황에서입력조건과결과를참, 거짓
으로표현하여조합을만들고테스트케이스를작성

상태전이
테스팅

시스템에반영되는이전의상태가무엇인지, 상태간전
이, 상태를변화시키는이벤트와입력값을파악

도리의디지털라이프블로그에서발췌
http://blog.skby.net/%EB%B8%94%EB%
9E%99%EB%B0%95%EC%8A%A4-
%ED%85%8C%EC%8A%A4%ED%8A%B
8-
%ED%99%94%EC%9D%B4%ED%8A%B
8%EB%B0%95%EC%8A%A4-
%ED%85%8C%EC%8A%A4%ED%8A%B
8/

http://blog.skby.net/%EB%B8%94%EB%9E%99%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8-%ED%99%94%EC%9D%B4%ED%8A%B8%EB%B0%95%EC%8A%A4-%ED%85%8C%EC%8A%A4%ED%8A%B8/

Parameters:
Pattern size:

empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty]

longer than any line in the file [error]

Quoting:
pattern is quoted [property quoted]

pattern is not quoted [if NonEmpty]
pattern is improperly quoted [error]

Embedded blanks:
no embedded blank [if NonEmpty]

one embedded blank [if NonEmpty and Quoted]
several embedded blanks [if NonEmpty and Quoted]

Embedded quotes:
no embedded quotes [if NonEmpty]

one embedded quotes [if NonEmpty]
several embedded quotes [if NonEmpty]

File name:
good file name
no file with this name [error]
omitted

Environments:
Number of occurrence of pattern in file:

none [if NonEmpty]

exactly one [if NonEmpty] [property Match]

more than one [if NonEmpty] [property Match]

Pattern occurrences on target line:
one [if Match]
more than one [if Match]

Total Tests frames:
125

Total Tests frames:
40

[single]

[single]

[single]

	Software Development Cycle
	SW Development and Testing Model �(a.k.a. V model)�
	Foundation of Software Testing
	Black Box Testing
	슬라이드 번호 5
	Requirement based Blackbox Testing VS Logic based Whitebox Testing
	Example of Blackbox Testing Technique:��The Category-Partition Method for Specifying and �Generating Functional Tests �(Thomas J. Ostrand and Marc J.Balcer [CACM,1988])
	Content:
	The goal of functional testing
	How to achieve this goal ?
	Functional test can be derived from 3 sources:
	Partition - The standard approach
	A strategy for test case generation
	A strategy for test case generation (cont)
	A strategy for test case generation (cont)
	Example
	슬라이드 번호 17
	Categories
	Adding Constraints between Categories�to Reduce #of TC’S
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	White Box Testing (1/2)
	White Box Testing (2/2)
	Bug Observability/Detection Model: �Reachability, Infection, Propagation, and Revelation (RIPR)
	슬라이드 번호 26
	사용자 관점의 테스트 방법, Black Box Test
	슬라이드 번호 28
	슬라이드 번호 29

