
Software Model Checking

Moonzoo Kim

σ3σ2

Operational Semantics of Software

• A system has its
semantics as a set of
system executions σ’s

• A system execution σ is
a sequence of states
s0s1…
– A state has an

environment ρs:Var-> Val

2

x:0,y:0

x:0,y:1

x:1,y:2

x:1,y:3

x:2,y:4

s0

s1

s2

s3

s4

x:5,y:1

x:5,y:2

x:5,y:3

x:5,y:4

s11

s12

s13

s14

x:7,y:3

x:7,y:4

s21

s22

σ1

Example
active type A() {
byte x;
again:

x=x+1;;
goto again;

}

3

x:0

x:1

x:2

x:255

active type A() {
byte x;
again:

x=x+1;;
goto again;

}

active type B() {
byte y;
again:

y++;
goto again;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:255,y:255

x:2,y:1 x:2,y:255

Note that model checking analyzes ALL possible execution scenarios
while testing analyzes SOME execution scenarios

Bug Detection vs. Verification

• Bug detection (testing):
– a given assert statement (at a given

code location) is violated
• proof: for a some execution like σ1, a

given assert is violated
– ex. σ1 violates the assert(2x != y) at s2 and s4

• Verification (model checking):
– a given assert statement will be

never violated (i.e., always satisfied)
• proof: for every possible execution σ1,

σ2, σ3, and so on, a given assert is
satisfied

– ex. there is no execution σ such that
assert(x >= 0) is violated.

4/24

5

Verification: State Exploration Method

• Model checking
– Generate possible states from the model/program and then check

whether given requirement properties are satisfied within the state
space

• On-the-fly v.s. generates all
• Symbolic states v.s. explicit state
• Model based v.s. code based

OK

Counter
example

or

System
model

Requirement
properties

Model Checking
(state exploration)

(Φ Ω)

Pros and Cons of Model Checking
• Pros

– Fully automated and provide complete coverage
– Concrete counter examples
– Full control over every detail of system behavior

• Highly effective for analyzing
– embedded software
– multi-threaded systems

• Cons
– State explosion problem
– An abstracted model may not fully reflect a real

system
– Needs to use a specialized modeling language

• Modeling languages are similar to programming languages,
but simpler and clearer

6

Companies Working on Model Checking

7

http://www.google.co.kr/imgres?imgurl=http://www.grupogeek.com/wp-content/uploads/2007/05/microsoft-logo.jpg&imgrefurl=http://lawiscool.com/2007/10/&h=360&w=450&sz=11&tbnid=j_WDRg2Y5x8J::&tbnh=102&tbnw=127&prev=/images?q=microsoft&hl=ko&usg=__w1mmGrXL0Ac5il_fo7xQOnH9_1M=&sa=X&oi=image_result&resnum=102&ct=image&cd=1
http://www.mathworks.com/
http://www.mathworks.com/
http://www.ibm.com/kr/ko/
http://kr.sun.com/
http://kr.sun.com/
http://www.mathworks.com/
http://www.cadence.com/us/pages/default.aspx
http://www.samsung.com/sec/index.html

Model Checking History

8/24

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

Example. Sort (1/2)
• Suppose that we want to verify sort(unsigned char* a) on an

array of 5 elements each of which is 1 byte long
– unsigned char a[5]; // 40 bits

• We wants to verify if sort() works correctly on every unsigned
char array a[5]

a) Hash table based explicit model checker (ex. Spin) generates at least 240

(= 1012 = 1 Tera) states

• 1 Tera states x 1 byte = 1 Tera byte memory required, no way…

b) Binary Decision Diagram (BDD) based symbolic model checker (ex.
NuSMV) takes 100 MB in 100 sec on Intel Xeon 5160 3Ghz machine

c) Bounded model checker (i.e., CBMC) takes less than 100 MB in 1 sec
9/24

9 14 2 200 64

main() {
assign all possible values to a;
sort(a);
assert(a[0]<=a[1]<=a[2]<=a[3]<=a[4]);}

Bounded Model Checking

10/24

C program source code

Boolean logic formula
(propositional logic)

A key idea: representing every
(bounded) execution path
as a pure Boolean logic formula

Overview of SAT-based Bounded
Model Checking

Requirements C Program

Formal Requirement
Properties

(Φ Ω)

Model Checker

↓
Abstract Model

↓

Okay

Satisfied
Not satisfied

Counter
example

Requirements

C Program
Formal Requirement
Properties in C
(ex. assert(x < a[i]);)

Translation to
SAT formula

↓

No bug

The formula is
unsatisfiable

The formule is
satisfiable

Counter example

SAT Solver

Example. Sort (2/2)

12/24

1. #include <stdio.h>
2. #define N 5
3. int main {
4. unsigned char data[N], i, j, tmp;
5. /* Assign random values to the array*/
6. for (i=0; i<N; i++){
7. data[i] = nondet_int();
8. }
9. /* It misses the last element, i.e., data[N-1]*/
10. for (i=0; i<N-1; i++)
11. for (j=i+1; j<N-1; j++)
12. if (data[i] > data[j]){
13. tmp = data[i];
14. data[i] = data[j];
15. data[j] = tmp;
16. }
17. /* Check the array is sorted */
18. for (i=0; i<N-1; i++){
19. assert(data[i] <= data[i+1]);
20. }
21. }

•SAT-based Bounded Model Checker (CBMC v
5.11) converts the (fixed version) of the left code
to a Boolean formula

•Total 2277 CNF clause with 905 boolean
propositional variables
•Theoretically, 2905 choices should be
evaluated!!!

N Exec time
(CBMC 5.11 on
i5-9600K)

Mem # of var # of clause

10 50 sec 43 M 2,895 9,382

20 1317 sec 150 M 10,175 37,842

40 2 hours 900 M 37,935 151,762

1000 >48 hours OOM
(>64GB)

NA NA

SAT Basics (1/3)

• SAT = Satisfiability
= Propositional Satisfiability

• NP-Complete problem
– We can use SAT solver for many NP-complete

problems
• Hamiltonian path
• 3 coloring problem
• Traveling sales man’s problem

• Recent interest as a verification engine

13/24

SAT
problem

Propositional
Formula

SAT

UNSAT

SAT Basics (2/3)

• A set of propositional variables and Conjunctive
Normal Form (CNF) clauses involving variables
– (x1 v x2’ v x3) ∧ (x2 v x1’ v x4)
– x1, x2, x3 and x4 are variables (true or false)

• Literals: Variable and its negation
– x1 and x1’

• A clause is satisfied if one of the literals is true
– x1=true satisfies clause 1
– x1=false satisfies clause 2

• Solution: An assignment that satisfies all clauses

14/24

SAT Basics (3/3)
• DIMACS SAT Format

– Ex. (x1 ∨ x2’ ∨ x3)

∧ (x2 ∨ x1’ ∨ x4)

p cnf 4 2
1 -2 3 0
2 -1 4 0

º x1 x2 x3 x4 f

º 1 T T T T T

º 2 T T T F T

º 3 T T F T T

º 4 T T F F T

º 5 T F T T T

º 6 T F T F F

º 7 T F F T T

º 8 T F F F F

º 9 F T T T T

º 10 F T T F T

º 11 F T F T F

º 12 F T F F F

º 13 F F T T T

º 14 F F T F T

º 15 F F F T T

º 16 F F F F T

Model/
solution

Model Checking as a SAT problem (1/6)

• Control-flow simplification
– All side effect are removed

• i++ => i=i+1;

– Control flow is made explicit
• continue, break => goto

– Loop simplification
• for(;;), do {…} while() => while()

16/24

Model Checking as a SAT problem (2/6)

• Unwinding Loop

17/24

x=0;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;

}}}
/*Unwinding assertion*/
assert (! (x < 2))

Unwinding the loop 3 times
x=0;
while(x < 2){
y=y+x;
x=x+1;;

}

Original code

x=0;
if (x < 2) {
y=y+x;
x=x+1;;

}
/* Unwinding assertion */
assert(!(x < 2))

Unwinding the loop 1 times

x=0;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;

}}
/* Unwinding assertion */
assert(!(x < 2))

Unwinding the loop 2 times

/*# of loop iter. is constant*/
for(i=0,j=0; i < 5; i++) {

j=j+i;
}

/*# of loop iter. is constant*/
for(i=0,j=0; j < 10; i++) {

j=j+i;
}

/* Complex but still constant
of loop iterations */
for(i=0; i < 5; i++) {

for(j=i; j < 5;j++) {
for(k= i+j; k < 5; k++) {

m += i+j+k;
}

}
}

Ex. Constant # of Loop Iterations

/* # of loop iter. Is unknown */
for(i=0,j=0; i^6-4*i^5 -17*i^4 != 9604 ; i++) {

j=j+i;
}

/* x: unsigned integer input
It iterates 0 to 232-1 times*/

for(i=0,j=0; i < x; i++) {
j=j+i;

}

/* j: unsigned integer input */
for(i=0; j < 10; i++) {

j=j+i;
}

Ex. Variable # of Loop Iterations
Depending on Input

/* a: unsigned integer array input */
for(i=0,sum=0; (i<2) || (sum<10) ;i++) {

sum += a[i];
}
/* Minimum # of iteration? Maximum # of iteration? */

Model Checking as a SAT problem (3/6)

• From C Code to SAT Formula

20/24

x=x+y;
if (x!=1)
x=2;

else
x=x+1;

x1==x0+y0;
if (x1!=1)

x2==2;
else

x3==x1+1;

P ≡ x1==x0+y0
∧ x2==2
∧ x3==x1+1

Note that solutions/models of P represent feasible execution scenarios of the original code

Ex1. W/ initial values x=1 and y=0, x becomes 2 at the end.
See that P is true w/ the following corresponding solution (x0,x1,x2,x3,y0) = (1,1,2,2,0)

Ex2. See that P is false w/ (x0,x1,x2,x3,y0) = (1,1,2,3,0).
Note that no corresponding execution scenario of the original code

Original code Static single assignment (SSA)

Generate SSA constraint
of the original code:

Every feasible execution
scenario of the original code

has its corresponding
solution of P and vice versa.

Model Checking as a SAT problem (4/6)

• From C Code to SAT Formula

21/24

x=x+y;
if (x!=1)
x=2;

else
x=x+1;

assert(x<=3);

x1==x0+y0;
if (x1!=1)

x2==2;
else

x3==x1+1;
x4==(x1!=1)?x2:x3;
assert(x4<=3);

P ≡ x1==x0+y0 ∧ x2==2 ∧ x3==x1+1 ∧ ((x1!=1∧x4==x2)∨(x1==1∧x4==x3))
A ≡ x4 <= 3

Check if P ∧ ¬ A is satisfiable.
- If it is satisfiable, the assertion is violated (i.e., the program is buggy w.r.t A)
- If it is unsatisfiable, the assertion is never violated (i.e., program is correct w.r.t. A)

Question: Why not P ∧ A but P ∧ ¬ A?

Original code Convert to static single assignment (SSA)

Generate constraints

1:x=x+y;
2:if (x!=1)
3: x=2;
4:else
5: x=x+1;;
6:assert(x<=3);

x1==x0+y0;
if (x1!=1)

x2==2;
else

x3==x1+1;
x4==(x1!=1)?x2:x3;
assert(x4<=3);

P ≡ x1==x0+y0 ∧ x2==2 ∧ x3==x1+1 ∧ ((x1!=1∧x4==x2)∨(x1==1∧x4==x3))
A ≡ x4 <= 3

Observations on the code
1. An execution scenario starting with x==1
and y==0 satisfies the assert
2. The code is correct (i.e., no bug w.r.t. A)

-case 1: x==1 at line 2=> x==2 at line 6
-case 2: x!=1 at line 2 => x==2 at line 6

Original code Convert to static single assignment (SSA)

Observations on the P
1. A solution of P which assigns every free variable

with a value and makes P true satisfies A
- ex. (x0:1,x1:1,x2:2,x3:2,x4:2,y0:0)

2. Every solution of P represents a feasible
execution scenario

3. P ∧ ¬A is unsatisfiable because every
solution has x4 as 2

Model Checking as a SAT problem (5/6)

Model Checking as a SAT problem (6/6)

23/24

Assume that x,y,z are three bits positive integers represented by
propositions x0x1x2, y0y1y2, z0z1z2
P ≡ z=x+y ≡ (z0$ (x0©y0)©((x1Æy1) Ç (((x1©y1)Æ(x2Æy2)))

Æ(z1$ (x1©y1)©(x2Æy2))
Æ (z2$ (x2©y2))

Finally, P ∧ ¬ A is converted to Boolean logic using a bit vector
representation for the integer variables y0,x0,x1,x2,x3,x4
• Example of arithmetic encoding into pure propositional formula

Example

24/24

/* Assume that x and y are 2 bit
unsigned integers */
/* Also assume that x+y <= 3 */
void f(unsigned int y) {

unsigned int x=1;
x=x+y;
if (x==2)

x+=1;
else

x=2;
assert(x ==2);

}

25/24

Advanced Issues on Bounded
Model Checking

26/24

Model checking (MC) v.s.
Bounded model checking (BMC)

• Target program is finite.
• But its execution is infinite
• MC targets to verify infinite execution

– Fixed point computation
– Liveness property check : <> f

• Eventually, some good thing happens
• Starvation freedom, fairness, etc

• BMC targets to verify finite execution only
– No loop anymore in the target program
– Subset of the safety property (practically useful

properties can still be checked)
• assert() statement

27/24

a

b c

a.b.c.a.b.c.a.b.c…

σ1 σ2 σn

fex = σ1∨σ2…∨σn

σn

α1

β1 β2

σ1=α1∧β2 σ2=α1∧β2

Note that a whole execution tree (i.e. all target program executions) can be
represented as a single SSA formulae.
- A whole execution tree can be represented as a disjunction of SSA formulas

each of which represents an execution (i.e. fex = ∨ σi) since ∨ represents
different worlds/scenarios.
- Each execution can be represented as a SSA formula (saying σi)
- Each execution can be represented using ∧ and ∨ for corresponding

execution segments

x1==x0+y0
∧ x2==2
∧ x3==x1+1

x1 !=1
∧ x4==x2

x1==1
∧ x4==x3

Warning: # of Unwinding Loop (1/2)
1:void f(unsigned int n) { // n can be any number
2: int i,x;
3: for(i=0; i < 2+ n%7; i++) {
4: x = x/ (i-5);// div-by-0 bug
5: }//assert(!(i<2+n%7)) or __CPROVER_assume(!(i<2+n%7))
6:}

• Q: What is the maximum # of iteration?
– A: nmax=8

• What will happen if you unwind the loop more than nmax times?
– What will happen if you unwind the loop less than nmax times?

• What if w/ unwinding assertion assert(!(i <2+n%7)) (default behavior of CBMC)?
• What if w/o unwinding assertion?
• What if w/ __cprover_assume((!(i <2+n%7))), which is the case w/ –no-unwinding-

assertions ?

• What is the minimum # of iterations?
– A: nmin =2
– What will happen if you unwind the loop less than nmin times w/

–no-unwinding-assertions ?

σ1
σ2 σn

--unwind 8
--unwind 6

--unwind 4
--unwind 1 ???

Target
system
exec.

scenarios
to analyze

1:void f(unsigned int n) {
2: int i,x;
3: for(i=0; i < 2+ n%7; i++) {
4: x = x/ (i-5);// div-by-0 bug
5: }//assert(!(i<2+n%7)) or __CPROVER_assume(!(i<2+n%7))
6:}

Warning: # of Unwinding Loop (2/2)

Note that a bug usually causes a failure
even in a small # of loop iteration
because a static fault often affects all
dynamic execution scenarios
(a.k.a., small world hypothesis in model
checking)

	Software Model Checking
	Operational Semantics of Software
	Example
	Bug Detection vs. Verification
	Verification: State Exploration Method
	Pros and Cons of Model Checking
	Companies Working on Model Checking
	Model Checking History
	Example. Sort (1/2)
	Bounded Model Checking
	Overview of SAT-based Bounded Model Checking
	Example. Sort (2/2)
	SAT Basics (1/3)
	SAT Basics (2/3)
	SAT Basics (3/3)
	Model Checking as a SAT problem (1/6)
	Model Checking as a SAT problem (2/6)
	Ex. Constant # of Loop Iterations
	Ex. Variable # of Loop Iterations Depending on Input
	Model Checking as a SAT problem (3/6)
	Model Checking as a SAT problem (4/6)
	Model Checking as a SAT problem (5/6)
	Model Checking as a SAT problem (6/6)
	Example
	슬라이드 번호 25
	Advanced Issues on Bounded Model Checking
	Model checking (MC) v.s. Bounded model checking (BMC)
	슬라이드 번호 28
	Warning: # of Unwinding Loop (1/2)
	Warning: # of Unwinding Loop (2/2)

