Software Model Checking

Moonzoo Kim

Operational Semantics of Software

« A system has its
semantics as a set of s, (LX0y0 D
system executions s !

, Crov
« A system execution o Is v <
a sequence of states 32@%2 D St SR
505.7-” d’s ’ v
— A state has an Syt 812@yzz

environment p.lar-> Val

active type A() {
byte x;
again:
X=x+1:
goto again;

}

active type A() {
byte X,
again:

X=x+1;,

goto again;

active type B() {
byte v,
again:
y++;
goto again;

Note that model checking analyzes ALL possible execution scenarios

while testing analyzes SOME execution scenarios

Bug Detection vs. Verification

« Bug detection (testing):

— a given assert statement (at a given
code location) is violated
« proof: for a some execution like 0, a
given assert is violated

— ex. 0y violates the assert(2x !=y) at s, and s,

 Verification (model checking):

— a given assert statement will be
never violated (i.e., always satisfied)

« proof: for every possible execution o,
o, 03 and so on, a given assert is
satisfied

— ex. there is no execution o such that
assert(x >= 0) is violated.

4/24

Verification: State Exploration Method

« Model checking

— Generate possible states from the model/program and then check
whether given requirement properties are satisfied within the state
space

« On-the-fly v.s. generates all
« Symbolic states v.s. explicit state
* Model based v.s. code based

System > OK
model
Model Checking 4
(state exploration)
Requirement___, 14 -¢) Counter

roperties
PTop example

Pros and Cons of Model Checking

* Pros
— Fully automated and provide complete coverage
— Concrete counter examples

— Full control over every detail of system behavior

« Highly effective for analyzing
— embedded software
— multi-threaded systems

« Cons
— State explosion problem

— An abstracted model may not fully reflect a real
system
— Needs to use a specialized modeling language

* Modeling languages are similar to programming languages,
but simpler and clearer

Companies Working on Model Checking

Jet Propulsion Laborator ; i IR
@ Califarnla'?nﬂltutenfTechnnIngyy ‘ '! The MathWorks

¥ Accelerating the pace of engineering and science

http://www.google.co.kr/imgres?imgurl=http://www.grupogeek.com/wp-content/uploads/2007/05/microsoft-logo.jpg&imgrefurl=http://lawiscool.com/2007/10/&h=360&w=450&sz=11&tbnid=j_WDRg2Y5x8J::&tbnh=102&tbnw=127&prev=/images?q=microsoft&hl=ko&usg=__w1mmGrXL0Ac5il_fo7xQOnH9_1M=&sa=X&oi=image_result&resnum=102&ct=image&cd=1
http://www.mathworks.com/
http://www.mathworks.com/
http://www.ibm.com/kr/ko/
http://kr.sun.com/
http://kr.sun.com/
http://www.mathworks.com/
http://www.cadence.com/us/pages/default.aspx
http://www.samsung.com/sec/index.html

Model Checking History

1981 Clarke / Emerson: CTL Model Checking 105
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking 10100
Burch, Clarke, Dill, McMillan
/ 1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT 101000
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

8/24

Example. Sort (1/2)

Suppose that we want to verify sort (unsigned char* a) on an
array of 5 elements each of which is 1 byte long
— unsigned char al[5]; // 40 bits

9 |14] 2 200‘64

We wants to verify if sort () works correctly on every unsigned
char array a[5]

main() {
assign all possible values to a;
sort(a);
assert(a[0]<=al[1]<=a[2]<=a[3]<=al4]);}

a) Hash table based explicit model checker (ex. Spin) generates at least 240
(= 10" = 1 Tera) states

» 1 Tera states x 1 byte = 1 Tera byte memory required, no way...

b) Binary Decision Diagram (BDD) based symbolic model checker (ex.
NuSMV) takes 100 MB in 100 sec on Intel Xeon 5160 3Ghz machine

¢) Bounded model checker (i.e., CBMC) takes less than 100 MB in 1 se%/24

Bounded Model Checking

int nlines, n;

e @vmvVu)AN(avanNVu)AN@Vvrvae)A(CEVevs)
Lines - o ANeVmVw)A (eVpVa)A(eVgVs)AeVpVs)
ANevVagVy) ANevrVvy AN(evrVvz)A(GVrVe)
AlgVovVyg) AlmVaVu)A(mVoVa)A(mVoVo)
ANMVGVs)ANMVTFVE)A(mVaVIAmY zVZ)
_ A@EVrVY)AloVrVT)A(PVgVs)A(rVaoVT)
i (lout_invert) ArVwVE)ArVwVz)
(b, endp, (int *) @);
nlines += 1;
R Boolean logic formula
= sw (propositional logic)
p = endp;
iF]r-(out_imh:-:-r*t &% p < 1lim)
orieni(p, Lin, o), A key idea: representing every
(bounded) execution path
as a pure Boolean logic formula

C program source code
10/24

Overview of SAT-based Bounded
Model Checking

Requirements C Program Requirements
! ! \
Formal Requirement Abstract Model Formal Requirement
Properties Properties in C C Program

0@ -9 / (ex. a5< x < alil);) /

Translation to

SAT formula
Model Checker ’

Satisfied SAT Solver
Not satisfied
Okay Counter / \

example The formula is The formule is
unsatisfiable satisfiable

No bug Coun#er example

Example. Sort (2/2)

1. #include <stdio.h>

*SAT-based Bounded Model Checker (CBMC v
5.11) converts the (fixed version) of the left code

to a Boolean formula
*Total 2277 CNF clause with 905 boolean

propositional variables
*Theoretically, 2905 choices should be
evaluated!!!

2. #define N 5

3. int main {

4. unsigned char data[N], i, j, tmp;

5. /* Assign random values to the array*/

6. for (i=0; i<N; i++){

7. data[i] = nondet_int();

8. }

9. /* It misses the last element, i.e., data[N-1]*/

10. for (i=0; i<N-1; i++)

11. for (j=i+1; j<N-1; j++)

12. if (data[i] > data[j]){

13. tmp = datali];

14. data[i] = data[j];

15. data[j] = tmp; 10
16. }

17. /* Check the array is sorted */ 20
18. for (i=0; i<N-T; i++){ 40
19. assert(data[i] <= data[i+1]);

20. } 1000
21.}

Exec time # of var # of clause
(CBMC 5.11 on
i5-9600K)
50 sec 43 M 2,895 9,382
1317 sec 150 M 10,175 37,842
2 hours 900 M 37,935 151,762
>48 hours OOM NA NA
(>64GB)

12/24

SAT Basics (1/3)

« SAT = Satisfiability
= Propositional Satisfiability —|SAT

Propositional — SAT |
Formula problem
* NP-Complete problem

— We can use SAT solver for many NP-complete
problems
« Hamiltonian path
3 coloring problem
 Traveling sales man’s problem

« Recent interest as a verification engine

—> | UNSAT

13/24

SAT Basics (2/3)

A set of propositional variables and Conjunctive
Normal Form (CNF) clauses involving variables

— (X{V X2V X3) A (X5 V X1V Xy)
— X4, X5, X3 and x, are variables (true or false)

Literals: Variable and its negation
— Xy and x4’

A clause is satisfied if one of the literals is true
— Xq,=true satisfies clause 1
— x,=false satisfies clause 2

Solution: An assignment that satisfies all clauses

SAT Basics (3/3)

« DIMACS SAT Format
—Ex. (X1 VX,V X3)

A (X5 V X1" V Xy)

pcnfd?
1-230
2-140

H

B | | |

EPR I I I R

Tew T 1 F 1 7

SPIR TR A N RER)

CI T NER T A)

Model/ o I RE R B B
solution \ o T F F T T
° T F F F F

o [E | | [[

“a |E T T | F |7

°y F T F T F

°s F T F F F

CEPRN NER NER I T)

°4+ [F [E T F T

°c F F F T T

°. F F F F T

Model Checking as a SAT problem (1/6)

« Control-flow simplification
— All side effect are removed

o i+ => i=i+1;
— Control flow is made explicit

* continue, break => goto
— Loop simplification

e for(;;), do {..} while () => while ()

Model Checking as a SAT problem (2/6)

« Unwinding Loop

Original code

Unwinding the loop 2 times

Unwinding the loop 3 times

x=0;

x=0; x=07

while (x < 2){ if (x < 2) { if (x < 2) |
Y=YTX; V=y+x; y=y+x;
x=x+1;; x=x+1;; x=x+1;;

) if (x < 2) { if (x < 2) |

Unwinding the loop 1 times i;i:?: ; z:ziz{: ;

1if (x < 2) | /* Unwinding assertion */ V=y+X;
V=y+x; assert (! (x < 2)) x=x+1;;
x=x+1;; b}

}

/* Unwinding assertion */
assert (! (x < 2))

/*Unwinding assertion* /
assert (! (x < 2))

I7/Z24

Ex. Constant # of Loop Iterations

/*# of loop iter. is constant*/ | /* Complex but still constant
for(i=0,j=0: 1 <57 i++) { # of loop iterations */

j=j+i; for(i=0; i < 5; i++) {
} for(j=i; j < 5;j++) {

for(k= i+j; k < 5; k++) {

/*# of loop iter. is constantx/ m += i#+k;
for(i=0,j=0; j < 10; i++) { h

j=j+i s
1 }

/* # of loop iter. Is unknown */

for(i=0,j=0; i"6—4xi"5 —17*"4 1= 9604 ; i++) {
j=j+i;

}

Ex. Variable # of Loop Iterations
Depending on Input

/* x: unsigned integer input /* j: unsigned integer input */
It iterates 0 to 2%2—1 times=*/ | | for(i=0; j < 10; i++) {
for(i=0,j=0; i < x; i++) { j=j+i;
=]+ !
}

/* a: unsigned integer array input */

for(i=0,sum=0; (i<2) || (sum<10) ;i++) {
sum += alil;

!

/* Minimum # of iteration? Maximum # of iteration? */

Model Checking as a SAT problem (3/6)

* From C Code to SAT Formula

Static single assignment (SSA)

Original code

X=XTYVY;

if (x!=1)
X=2;

else
x=x+1;

=

Generate SSA constraint

of the original code:

X1==XgtYys

1t (x,!=1)

else
X,==x,+1;

Every feasible execution
scenario of the original code
has its corresponding
solution of P and vice versa.

Note that solutions/models of P represent feasible execution scenarios of the original code

Ex1. W/ initial values x=1 and y=0, x becomes 2 at the end.

See that P is true w/ the following corresponding solution (xy,X;,X,,X3,¥,) = (1,1,2,2,0)

Ex2. See that P is false w/ (xq,X1,%,,%3,Y0) = (1,1,2,3,0).

Note that no corresponding execution scenario of the original code

20/24

Model Checking as a SAT problem (4/6)
* From C Code to SAT Formula

Original code Convert to static single assignment (SSA)
X1==XytVYys
X=X+y; if (x,!=1)
if (x!=1) x,==2;
X=2; else
else xy==x,+1;
x=x+1; X,==(x!=1) ?x,:x5;
assert (x<=3); assert (x,<=3) ;

Generate constraints
P = X,==X,1tYy A X,==2 A X3==xX,+1 A ((x, |=1Ax,==x)V (2, ==1Ax,==x,))
A=x, <=3

Check if P A — Ais satisfiable.

- If itis satisfiable, the assertion is violated (i.e., the program is buggy w.r.t A)

- If itis unsatisfiable, the assertion is never violated (i.e., program is correct w.r.t. A)

Question: Why not PAAbut PA —A? 21/24

Model Checking as a SAT problem (5/6)

Original code

X=XtV

:1f (x!=1)
X=2;

:else

x=x+1;;
:assert (x<=3) ;

o O dx W N -

Convert to static single assignment (SSA)
X1==X3tYys
1if (x,!=1)
X,==2;
else
X,==x;+1;
X,==(x,1=1) ?x,:x5;
assert (x,<=3);

= X,==XtYy A X,==2 A xX;==x;+t1 A ((x |=1Ax,==x) Vv (x ==1Ax,==x,))

P
A=x, <=3

Observations on the code

1. An execution scenario starting with x==

and y==0 satisfies the assert

2. The code is correct (i.e., no bug w.r.t. A)
-case 1: x==1 at line 2=> x==2 at line 6
-case 2: x!I=1 at line 2 => x==2 at line 6

Observations on the P

1. A solution of P which assigns every free variable
with a value and makes P true satisfies A
-ex. (xg1,x.:1,%,:12,%x3:2,%,:2,v,:0)

2. Every solution of P represents a feasible
execution scenario

3. P A —Ais unsatisfiable because every
solution has x, as 2

Model Checking as a SAT problem (6/6)

Finally, P A — A is converted to Boolean logic using a bit vector
representation for the integer variables v, x,, x,, x,, x5, %,

* Example of arithmetic encoding into pure propositional formula

Assume that x,y,z are three bits positive integers represented by
propositions XyX{Xo, YoY1Y2, ZoZ1Zo
P=z=x+y= (2,% (Xo©Yo)O((X18y4) C (((x40y4)HXA45)))
AE(z,$ (x,0y,)O(x,A4,))
A (2,5 (x,0y,))

B S Cin t
} C Cout

Full adder circuit diagram
Inputs: {A, B, Carryin} — Outputs: {Sum, CarryOut}

Half adder circuit diagram

Example

/* Assume that x and y are 2 bit
unsigned integers */
/* Also assume that x+y <= 3 */
void f(unsigned int y) {
unsigned int x=1,;
X=X+YV;
if (x==2)
X+=1;
else
X=2,
assert(x ==2);

24/24

25/24

Advanced Issues on Bounded
Model Checking

Model checking (MC) v.s.
Bounded model checking (BMC)

Target program is finite.
But its execution is infinite

MC targets to verify infinite execution
— Fixed point computation

— Liveness property check : <> f a.b.c.a.b.cab.c
« Eventually, some good thing happens

- Starvation freedom, fairness, etc
BMC targets to verify finite execution only
— No loop anymore in the target program

— Subset of the safety property (practically useful
properties can still be checked)
« assert() statement

27/24

x1==x0+y0
A X2==2 0(7
A X3==x1+1

Note that a whole execution tree (i.e. all target program executions) can be

represented as a single SSA formulae.

- A whole execution tree can be represented as a disjunction of SSA formulas
each of which represents an execution (i.e. f,, = vV &) since Vv represents
different worlds/scenarios.

- Each execution can be represented as a SSA formula (saying ;)
- Each execution can be represented using A and v for corresponding
execution segments

Warning: # of Unwinding Loop (1/2)

l:void f(unsigned int n) { // n can be any number

2 int 1,x;

3 for (1=0; 1 < 2+ n%7; i1++) {

4 x = x/ (i-5);// div-by-0 bug

5 }//assert (! (1<2+n%7)) or CPROVER assume (! (1<2+n%7))
6:}

« Q: What is the maximum # of iteration?
- A'n,,=8
« What will happen if you unwind the loop more than n

— What will happen if you unwind the loop less than n__, times?
« What if w/ unwinding assertion assert(!(i <2+n%7)) (default behavior of CBMC)?
« What if w/o unwinding assertion?

« Whatifw/ cprover assume (({(i <2+n%7))), which is the case w/ —-no-unwinding-
assertions?

« What is the minimum # of iterations?
— An.. =2

— What will happen if you unwind the loop less than n_;, times w/
-no-unwinding-assertions?

times?

Mmax

min

Warning: # of Unwinding Loop (2/2)

:vold f (unsigned int n) {
int 1,x;

x = x/ (1-5);// div-by-0 bug

}//assert (! (1<2+n%7)) or CPROVER assume (! (1<2+n%7))

1
2
3: for(i=0; i < 2+ n%7; 1i++) {
4
5
0

)

--unwind 8
TN NI IIE I I S S S S S S S S S S - - 1
Target |
system I
exec ~--unwind 1 ??? |
scenarios I
to analyze

oy

Note that a bug usually causes a failure
even in a small # of loop iteration
because a static fault often affects all
dynamic execution scenarios

(a.k.a., small world hypothesis in model
checking)

	Software Model Checking
	Operational Semantics of Software
	Example
	Bug Detection vs. Verification
	Verification: State Exploration Method
	Pros and Cons of Model Checking
	Companies Working on Model Checking
	Model Checking History
	Example. Sort (1/2)
	Bounded Model Checking
	Overview of SAT-based Bounded Model Checking
	Example. Sort (2/2)
	SAT Basics (1/3)
	SAT Basics (2/3)
	SAT Basics (3/3)
	Model Checking as a SAT problem (1/6)
	Model Checking as a SAT problem (2/6)
	Ex. Constant # of Loop Iterations
	Ex. Variable # of Loop Iterations Depending on Input
	Model Checking as a SAT problem (3/6)
	Model Checking as a SAT problem (4/6)
	Model Checking as a SAT problem (5/6)
	Model Checking as a SAT problem (6/6)
	Example
	슬라이드 번호 25
	Advanced Issues on Bounded Model Checking
	Model checking (MC) v.s. Bounded model checking (BMC)
	슬라이드 번호 28
	Warning: # of Unwinding Loop (1/2)
	Warning: # of Unwinding Loop (2/2)

