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Operational Semantics of Software 

• A system has its 
semantics as a set of 
system executions σ’s

• A system execution σ is 
a sequence of states 
s0s1…
– A state has an 

environment ρs:Var-> Val
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Example
active type A() {
byte x;
again:

x=x+1;;
goto again;

}
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x:0

x:1

x:2

x:255

active type A() {
byte x;
again:

x=x+1;;
goto again;

}

active type B() {
byte y;
again:

y++;
goto again;

}

x:0,y:0

x:1,y:0

x:2,y:0

x:255,y:0

x:0,y:1

x:1,y:1

x:0,y:255

x:1,y:255

x:255,y:255

x:2,y:1 x:2,y:255

Note that model checking analyzes ALL possible execution scenarios 
while testing analyzes SOME execution scenarios



Bug Detection vs. Verification

• Bug detection (testing): 
– a given assert statement (at a given 

code location) is violated
• proof: for a some execution like σ1, a 

given assert is violated
– ex. σ1 violates the assert( 2x != y) at s2 and s4

• Verification (model checking):
– a given assert statement will be 

never violated (i.e., always satisfied)  
• proof: for every possible execution σ1, 

σ2, σ3, and so on, a given assert is 
satisfied

– ex. there is no execution σ such that 
assert( x >= 0)  is violated.
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Verification: State Exploration Method

• Model checking
– Generate possible states from the model/program and then check 

whether given requirement properties are satisfied within the state 
space

• On-the-fly v.s. generates all
• Symbolic states v.s. explicit state
• Model based v.s. code based

OK

Counter 
example

or

System 
model

Requirement 
properties

Model Checking
(state exploration)

(Φ         Ω)



Pros and Cons of Model Checking
• Pros

– Fully automated and provide complete coverage
– Concrete counter examples
– Full control over every detail of system behavior

• Highly effective for analyzing 
– embedded software 
– multi-threaded systems 

• Cons
– State explosion problem
– An abstracted model may not fully reflect a real 

system
– Needs to use a specialized modeling language 

• Modeling languages are similar to programming languages, 
but simpler and clearer
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Companies Working on Model Checking 
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http://www.google.co.kr/imgres?imgurl=http://www.grupogeek.com/wp-content/uploads/2007/05/microsoft-logo.jpg&imgrefurl=http://lawiscool.com/2007/10/&h=360&w=450&sz=11&tbnid=j_WDRg2Y5x8J::&tbnh=102&tbnw=127&prev=/images?q=microsoft&hl=ko&usg=__w1mmGrXL0Ac5il_fo7xQOnH9_1M=&sa=X&oi=image_result&resnum=102&ct=image&cd=1
http://www.mathworks.com/
http://www.mathworks.com/
http://www.ibm.com/kr/ko/
http://kr.sun.com/
http://kr.sun.com/
http://www.mathworks.com/
http://www.cadence.com/us/pages/default.aspx
http://www.samsung.com/sec/index.html


Model Checking History 
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1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998  Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000



Example. Sort (1/2)  
• Suppose that we want to verify sort(unsigned char* a) on an 

array of 5 elements each of which is 1 byte long 
– unsigned char a[5]; // 40 bits

• We wants to verify if sort() works correctly on every unsigned 
char array a[5]

a) Hash table based explicit model checker (ex. Spin) generates at least 240

(= 1012 = 1 Tera) states  

• 1 Tera states x 1 byte = 1 Tera byte memory required, no way…

b) Binary Decision Diagram (BDD) based symbolic model checker (ex. 
NuSMV) takes 100 MB in 100 sec on Intel Xeon 5160 3Ghz machine

c) Bounded model checker (i.e., CBMC) takes less than 100 MB in 1 sec 
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9 14 2 200 64

main() { 
assign all possible values to a; 
sort(a); 
assert(a[0]<=a[1]<=a[2]<=a[3]<=a[4]);}



Bounded Model Checking
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C program source code

Boolean logic formula 
(propositional logic)

A key idea: representing every 
(bounded) execution path 
as a pure Boolean logic formula 



Overview of SAT-based Bounded 
Model Checking

Requirements C Program

Formal Requirement 
Properties

(Φ         Ω)

Model Checker

↓
Abstract Model

↓

Okay

Satisfied
Not satisfied

Counter 
example

Requirements

C Program
Formal Requirement 
Properties in C
(ex. assert( x < a[i]); )

Translation to 
SAT formula

↓

No bug

The formula is 
unsatisfiable

The formule is 
satisfiable

Counter example

SAT Solver



Example. Sort (2/2) 
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1. #include <stdio.h>
2. #define N 5
3. int main {
4.     unsigned char data[N], i, j, tmp;
5.     /* Assign random values to the array*/ 
6.     for (i=0; i<N; i++){
7.         data[i] = nondet_int();
8.     }
9.    /* It misses the last element, i.e., data[N-1]*/
10.     for (i=0; i<N-1; i++)
11.        for ( j=i+1; j<N-1; j++)
12.             if (data[i] > data[ j]){
13.                 tmp = data[i];
14.                 data[i] = data[ j];
15.                 data[ j] = tmp;
16.             }
17. /* Check the array is sorted */ 
18.     for (i=0; i<N-1; i++){
19.         assert(data[i] <= data[i+1]);
20.    }
21. }

•SAT-based Bounded Model Checker (CBMC v 
5.11) converts the (fixed version) of the left code 
to a Boolean formula

•Total 2277 CNF clause with 905 boolean
propositional variables
•Theoretically, 2905 choices should be 
evaluated!!!

N Exec time 
(CBMC 5.11 on  
i5-9600K )

Mem # of var # of clause

10 50 sec 43 M 2,895 9,382

20 1317 sec 150 M 10,175 37,842

40 2 hours 900 M 37,935 151,762

1000 >48 hours OOM 
(>64GB)

NA NA



SAT Basics (1/3)

• SAT = Satisfiability
= Propositional Satisfiability

• NP-Complete problem
– We can use SAT solver for many NP-complete 

problems
• Hamiltonian path
• 3 coloring problem
• Traveling sales man’s problem

• Recent interest as a verification engine
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SAT
problem

Propositional
Formula

SAT 

UNSAT 



SAT Basics (2/3)

• A set of propositional variables and Conjunctive 
Normal Form (CNF) clauses involving variables
– (x1 v x2’ v x3) ∧ (x2 v x1’ v x4) 
– x1, x2, x3 and x4 are variables (true or false)

• Literals: Variable and its negation
– x1 and x1’

• A clause is satisfied if one of the literals is true
– x1=true satisfies clause 1
– x1=false satisfies clause 2

• Solution: An assignment that satisfies all clauses
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SAT Basics (3/3)
• DIMACS SAT Format

– Ex. (x1 ∨ x2’ ∨ x3)

∧ (x2 ∨ x1’ ∨ x4)

p cnf 4 2
1 -2 3 0
2 -1 4 0

º x1 x2 x3 x4 f

º 1 T T T T T

º 2 T T T F T

º 3 T T F T T

º 4 T T F F T

º 5 T F T T T

º 6 T F T F F

º 7 T F F T T

º 8 T F F F F

º 9 F T T T T

º 10 F T T F T

º 11 F T F T F

º 12 F T F F F

º 13 F F T T T

º 14 F F T F T

º 15 F F F T T

º 16 F F F F T

Model/ 
solution



Model Checking as a SAT problem (1/6)

• Control-flow simplification
– All side effect are removed

• i++ => i=i+1;

– Control flow is made explicit
• continue, break => goto

– Loop simplification
• for(;;), do {…} while() => while()
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Model Checking as a SAT problem (2/6)

• Unwinding Loop
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x=0;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;

}}}
/*Unwinding assertion*/
assert (! (x < 2))

Unwinding the loop 3 times
x=0;
while(x < 2){
y=y+x;
x=x+1;;

}

Original code

x=0;
if (x < 2) {
y=y+x;
x=x+1;;

}
/* Unwinding assertion */
assert(!(x < 2))

Unwinding the loop 1 times

x=0;
if (x < 2) {
y=y+x;
x=x+1;;
if (x < 2) {
y=y+x;
x=x+1;;

}}
/* Unwinding assertion */
assert(!(x < 2))

Unwinding the loop 2 times



/*# of loop iter. is constant*/
for(i=0,j=0; i < 5; i++) {

j=j+i;
}

/*# of loop iter. is constant*/
for(i=0,j=0; j < 10; i++) {

j=j+i;
}

/* Complex but still constant
# of loop iterations */
for(i=0; i < 5; i++) {

for(j=i; j < 5;j++) {
for(k= i+j; k < 5; k++) {

m += i+j+k;
}

}
}

Ex. Constant # of Loop Iterations 

/* # of loop iter. Is unknown */
for(i=0,j=0; i^6-4*i^5 -17*i^4 != 9604 ; i++) {

j=j+i;
}



/* x: unsigned integer input
It iterates 0 to 232-1 times*/

for(i=0,j=0; i < x; i++) {
j=j+i;

}

/* j: unsigned integer input */
for(i=0; j < 10; i++) {

j=j+i;
}

Ex. Variable # of Loop Iterations 
Depending on Input

/* a: unsigned integer array input */
for(i=0,sum=0; (i<2) || (sum<10) ;i++) {

sum += a[i];  
}
/* Minimum # of iteration? Maximum # of iteration? */



Model Checking as a SAT problem (3/6)

• From C Code to SAT Formula
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x=x+y;
if (x!=1)
x=2;

else 
x=x+1;

x1==x0+y0;
if (x1!=1)

x2==2;
else 

x3==x1+1;

P ≡ x1==x0+y0 
∧ x2==2
∧ x3==x1+1

Note that solutions/models of P represent feasible execution scenarios of the original code 

Ex1. W/ initial values x=1 and y=0, x becomes 2 at the end. 
See that P is true w/ the following corresponding solution (x0,x1,x2,x3,y0) = (1,1,2,2,0)

Ex2. See that P is false w/ (x0,x1,x2,x3,y0) = (1,1,2,3,0).
Note that no corresponding execution scenario of the original code

Original code Static single assignment (SSA)

Generate SSA constraint 
of the original code: 

Every feasible execution 
scenario of the original code 

has its corresponding 
solution of P and vice versa.



Model Checking as a SAT problem (4/6)

• From C Code to SAT Formula
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x=x+y;
if (x!=1)
x=2;

else 
x=x+1;

assert(x<=3); 

x1==x0+y0;
if (x1!=1)

x2==2;
else 

x3==x1+1;
x4==(x1!=1)?x2:x3;
assert(x4<=3); 

P ≡ x1==x0+y0 ∧ x2==2 ∧ x3==x1+1 ∧ ((x1!=1∧x4==x2)∨(x1==1∧x4==x3))
A ≡ x4 <= 3 

Check if  P ∧ ¬ A is satisfiable. 
- If it is satisfiable, the assertion is violated (i.e., the program is buggy w.r.t A) 
- If it is unsatisfiable, the assertion is never violated (i.e., program is correct w.r.t. A)

Question: Why not P ∧ A but P ∧ ¬ A?

Original code Convert to static single assignment (SSA)

Generate constraints



1:x=x+y;
2:if (x!=1)
3:  x=2;
4:else 
5:  x=x+1;;
6:assert(x<=3); 

x1==x0+y0;
if (x1!=1)

x2==2;
else 

x3==x1+1;
x4==(x1!=1)?x2:x3;
assert(x4<=3); 

P ≡ x1==x0+y0 ∧ x2==2 ∧ x3==x1+1 ∧ ((x1!=1∧x4==x2)∨(x1==1∧x4==x3))
A ≡ x4 <= 3 

Observations on the code
1. An execution scenario starting with x==1 
and y==0 satisfies the assert
2. The code is correct (i.e., no bug w.r.t. A)  

-case 1: x==1 at line 2=> x==2 at line 6
-case 2: x!=1 at line 2 => x==2 at line 6

Original code Convert to static single assignment (SSA)

Observations on the P
1. A solution of P which assigns every free variable 

with a value and makes P true satisfies A
- ex.  (x0:1,x1:1,x2:2,x3:2,x4:2,y0:0)

2.   Every solution of P represents a feasible 
execution scenario 

3.   P ∧ ¬A is unsatisfiable because every 
solution has x4 as 2  

Model Checking as a SAT problem (5/6)



Model Checking as a SAT problem (6/6)
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Assume that x,y,z are three bits positive integers represented by 
propositions x0x1x2, y0y1y2, z0z1z2
P ≡ z=x+y ≡ (z0$ (x0©y0)©( (x1Æy1) Ç (((x1©y1)Æ(x2Æy2)))

Æ(z1$ (x1©y1)©(x2Æy2)) 
Æ (z2$ (x2©y2)) 

Finally, P ∧ ¬ A is converted to Boolean logic using a bit vector 
representation for the integer variables  y0,x0,x1,x2,x3,x4
• Example of arithmetic encoding into pure propositional formula 



Example
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/* Assume that x and y are 2 bit 
unsigned integers */
/* Also assume that x+y <= 3 */
void f(unsigned int y) {

unsigned int x=1;
x=x+y;
if (x==2)

x+=1;
else

x=2;
assert(x ==2);

}
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Advanced Issues on Bounded 
Model Checking 
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Model checking (MC) v.s. 
Bounded model checking (BMC)

• Target program is finite.
• But its execution is infinite
• MC targets to verify infinite execution

– Fixed point computation
– Liveness property check : <> f

• Eventually, some good thing happens
• Starvation freedom, fairness, etc

• BMC targets to verify finite execution only
– No loop anymore in the target program
– Subset of the safety property (practically useful 

properties can still be checked)
• assert() statement
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a

b c

a.b.c.a.b.c.a.b.c…



σ1 σ2 σn

fex = σ1∨σ2…∨σn

σn

α1

β1 β2

σ1=α1∧β2     σ2=α1∧β2 

Note that a whole execution tree (i.e. all target program executions) can be 
represented as a single SSA formulae.  
- A whole execution tree can be represented as a disjunction of SSA formulas 

each of which represents an execution (i.e. fex = ∨ σi ) since ∨ represents 
different worlds/scenarios.
- Each execution can be represented as a SSA formula (saying σi )
- Each execution can be represented using ∧ and ∨ for corresponding 

execution segments  

x1==x0+y0
∧ x2==2 
∧ x3==x1+1 

x1 !=1
∧ x4==x2

x1==1
∧ x4==x3



Warning: # of Unwinding Loop  (1/2)
1:void f(unsigned int n) { // n can be any number
2:  int i,x;
3:  for(i=0; i < 2+ n%7; i++) {
4:    x = x/ (i-5);// div-by-0 bug
5:  }//assert(!(i<2+n%7)) or __CPROVER_assume(!(i<2+n%7))
6:}

• Q: What is the maximum # of iteration? 
– A: nmax=8

• What will happen if you unwind the loop more than nmax times?
– What will happen if you unwind the loop less than nmax times?

• What if w/ unwinding assertion assert(!(i <2+n%7)) (default behavior of CBMC)?
• What if w/o unwinding assertion?
• What if w/ __cprover_assume((!(i <2+n%7))), which is the case w/ –no-unwinding-

assertions ? 

• What is the minimum # of iterations?
– A: nmin =2
– What will happen if you unwind the loop less than nmin times w/

–no-unwinding-assertions ?



σ1
σ2 σn

--unwind 8
--unwind 6

--unwind 4
--unwind 1 ???

Target 
system 
exec. 

scenarios 
to analyze

1:void f(unsigned int n) {
2:  int i,x;
3:  for(i=0; i < 2+ n%7; i++) {
4:    x = x/ (i-5);// div-by-0 bug
5:  }//assert(!(i<2+n%7)) or __CPROVER_assume(!(i<2+n%7))
6:}

Warning: # of Unwinding Loop  (2/2)

Note that a bug usually causes a failure 
even in a small # of loop iteration 
because a static fault often affects all 
dynamic execution scenarios  
(a.k.a., small world hypothesis in model 
checking)
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