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First order theories

(Chapter 1, Sections 1.4 – 1.5)

From the slides for the book 
“Decision procedures” 
by D.Kroening and O.Strichman



Prelude: Syntax v.s. Semantic in Logic Framework  
 An example of small language

 Syntax
 F := 0 | 1 | F + 1 | 1 + F
 Ex. 0, 0+1+1, 1+0+1, but not 0+0

 Possible semantics
 1 + 1 == 1 + 1 + 0 ?

 Yes (interpreting formula as a natural #), 
 [1 + 1] N1 = 2, [1 + 1 + 0]N1  =2  1 + 1 =N1 1 + 1 + 0

 No  (interpreting formula as string),
 [1+1] S=“1+1”,[1+1+0]S=“1+1+0” 1+1 !=S 1+1+0  

 No  (interpreting formula as a natural # of string length)
 [1 + 1] N2 = 3, [1 + 1 + 0]N2  =5  1 + 1 !=N2 1 + 1 + 0
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First order logic

 A first order theory consists of
 Variables
 Logical symbols: � � � � � `(’ `)’
 Non-logical Symbols : Constants, predicate and function 

symbols 
 Syntax
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Examples

  = {0,1, ‘+’, ‘>’}
 ‘0’,’1’ are constant symbols
 ‘+’ is a binary function symbol
 ‘>’ is a binary predicate symbol

 An example of a -formula: 

�y �x. x > y
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Examples

  = {1, ‘>’, ‘<’, ‘isprime’}
 ‘1’ is a constant symbol
 ‘>’, ‘<‘ are binary predicates symbols
 ‘isprime’ is a unary predicate symbol

 An example -formula:

�n �p. n > 1 � isprime(p) � n < p < 2n.

 Are these formulas valid ? 
 So far these are only symbols, strings. No meaning yet. 
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Interpretations

 Let  = {0,1, ‘+’, ‘=’} where 0,1 are constants, ‘+’ is a 
binary function symbol and ‘=’ a predicate symbol.

 Let  = �x. x + 0 = 1

 Q: Is  true in � 0 ? 

 A: Depends on the interpretation! 
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Structures

 A structure is given by:
1. A domain
2. An interpretation of the nonlogical symbols: i.e.,

 Maps each predicate symbol to a predicate of the same arity
 Maps each function symbol to a function of the same arity
 Maps each constant symbol to a domain element

3. An assignment of a domain element to each free (unquantified) 
variable
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Structures

 Remember  = �x. x + 0 = 1
 Consider the structure S: 

 Domain: � 0

 Interpretation: 
 ‘0’ and ‘1’ are mapped to 0 and 1 in � 0

 ‘=’  = (equality) 
 ‘+’  * (multiplication)

 Now, is  true in S ? 
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Satisfying structures

 Definition: A formula is satisfiable if there exists a 
structure that satisfies it

 Example:  = �x. x + 0 = 1 is satisfiable
 Consider the structure S’: 

 Domain: � 0

 Interpretation: 
 ‘0’ and ‘1’ are mapped to 0 and 1 in � 0

 ‘=‘  = (equality)
 ‘+’  + (addition)

 S’ satisfies .  S’ is said to be a model of .
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First-order theories

 First-order logic is a framework.
 It gives us a generic syntax and building blocks for 

constructing restrictions thereof.
 Each such restriction is called a first-order theory.

 A theory defines 
 the signature  (the set of nonlogical symbols) and 
 the interpretations that we can give them.
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Definitions

  – the signature. This is a set of nonlogical symbols.

 -formula: a formula over  symbols + logical symbols. 

 A variable is free if it is not bound by a quantifier. 

 A sentence is a formula without free variables. 

 A -theory T is defined by a set of -sentences.
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Definitions…

 Let T be a -theory

 A -formula  is T-satisfiable if there exists a structure 

that satisfies both  and the sentences defining T.

 A -formula  is T-valid if all structures that satisfy the 

sentences defining T also satisfy .
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Example

 Let  = {0,1, ‘+’, ‘=’}
 Recall  = �x. x + 0 = 1
  is a -formula. 
 We now define the following -theory:

 �x. x = x // ‘=‘ must be reflexive
 �x,y. x + y = y + x // ‘+’ must be commutative

 Not enough to prove the validity of 	 !
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Theories through axioms

 The number of sentences that are necessary for defining 
a theory may be large or infinite. 

 Instead, it is common to define a theory through a set of 
axioms.

 The theory is defined by these axioms and everything 
that can be inferred from them by a sound inference 
system.
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Example 1

 Let  = {‘=’}
 An example -formula is  = ((x = y) � � (y = z)) � �(x = z)

 We would now like to define a -theory T that will limit 
the interpretation of ‘=‘ to equality.

 We will do so with the equality axioms: 
 �x. x = x (reflexivity)
 �x,y. x = y � y = x (symmetry)
 �x,y,z. x = y � y = z � x = z (transitivity)

 Every structure that satisfies these axioms also satisfies 
 above. 

 Hence  is T-valid. 
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Example 2

 Let  = {‘<’}
 Consider the -formula 	: �x �y. y < x
 Consider the theory T:

 �x,y,z. x < y � y < z → x < z (transitivity)
 �x,y. x < y → �(y < x) (anti-symmetry) 
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Example 2 (cont’d)

 Recall: 	: �x �y. y < x

 Is 	 T-satisfiable? 
 We will show a model for it.

 Domain: 

 ‘<’  <

 Is 	 T-valid ?
 We will show a structure to the contrary

 Domain: � 0

 ‘<’  <
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Fragments

 So far we only restricted the nonlogical symbols.
 Sometimes we want to restrict the grammar and the 

logical symbols that we can use as well. 
 These are called logic fragments. 
 Examples:

 The quantifier-free fragment over  = {‘=’, ‘+’,0,1}
 The conjunctive fragment over   = {‘=’, ‘+’,0,1}
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Fragments

 Let  = {}
 (T must be empty: no nonlogical symbols to interpret)

 Q: What is the quantifier-free fragment of T ?
 A: propositional logic 

 Thus, propositional logic is also a first-order theory.
 A very degenerate one.
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Theories

 Let  = {}
 (T must be empty: no nonlogical symbols to interpret)

 Q: What is T ?
 A: Quantified Boolean Formulas (QBF)

 Example: 
 �x1 �x2 �x3. x1 → (x2 � x3)
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Some famous theories

 Presburger arithmetic:  = {0,1, ‘+’, ‘=’}
 Peano arithmetic:  = {0,1, ‘+’, ‘*’, ‘=’}
 Theory of reals
 Theory of integers
 Theory of arrays
 Theory of pointers
 Theory of sets
 Theory of recursive data structures
 …
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The algorithmic point of view...

 It is also common to present theories NOT through the 
axioms that define them.

 The interpretation of symbols is fixed to their common 
use. 
 Thus ‘+’ is plus, ...

 The fragment is defined via grammar rules rather than 
restrictions on the generic first-order grammar.
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The algorithmic point of view...

 Example: equality logic (= “the theory of equality”)
 Grammar:

formula : formula � formula | � formula  | atom

atom : term-variable = term-variable 
| term-variable = constant  | Boolean-variable

 Interpretation: 
‘=’ is equality.
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The algorithmic point of view...

 This simpler way of presenting theories is all that is 
needed when our focus is on decision procedures 
specific for the given theory. 

 The traditional way of presenting theories is useful when 
discussing generic methods (for any decidable theory T)
 Example 1: algorithms for combining two or more theories
 Example 2: generic SAT-based decision procedure given a 

decision procedure for the conjunctive fragment of T.
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Expressiveness of a theory

 Each formula defines a language:
the set of satisfying assignments (‘models’) are the 
words accepted by this language.

 Consider the fragment ‘2-CNF’
formula : ( literal � literal ) |  formula � formula
literal: Boolean-variable | �Boolean-variable

(�1 � ��2) � (��3 � �2)
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Expressiveness of a theory

 Now consider a Propositional Logic formula
 (�1 � �2 � �3).

 Q: Can we express this language with 2-CNF?
 A: No. 

Proof: 
 The language accepted by  has 7 words: all assignments other 

than �1 = �2 = �3 = F.
 The first 2-CNF clause removes ¼ of the assignments, which 

leaves us with 6 accepted words. Additional clauses only remove 
more assignments.
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Expressiveness of a theory

 Claim: �
��� � �������������������

 �  � ����!��" � �������!�������������# �$ �%  ����" ��� �&

Languages defined 
by �2

Languages defined 
by �1

�2 is more expressive than �1.

Denote: �1 � �2
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The tradeoff 

 So we see that theories can have different expressive 
power.

 Q: why would we want to restrict ourselves to a theory or 
a fragment ? why not take some ‘maximal theory’…

 A: Adding axioms to the theory may make it harder to 
decide or even undecidable.
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Example: Hilbert axiom system (' )

 Let ' be (M.P) + the following axiom schemas:

(H1)
A � (B � A)   

(H2)
((A � (B � C)) � ((A� B)� (A� C))

(H3)(�B � ��A) � �(A � B)

 ' is sound and complete
 This means that with ' we can prove any valid propositional 

formula, and only such formulas. The proof is finite.
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Example

 But there exists first order theories defined by axioms 
which are not sufficient for proving all T-valid formulas.



32

Example: First Order Peano Arithmetic

  = {0,1,‘+’, ‘*’, ‘=’}
 Domain: Natural numbers

 Axioms (“semantics”):
1. � x : (0  x + 1) 
2. � x : � y : (x  y) � (x + 1  y + 1) 
3. Induction
4. � x : x + 0 = x 
5. � x : � y : (x + y) + 1 = x + (y + 1) 
6. � x : x * 0 = 0 
7. � x � y : x * (y + 1) = x * y + x 

+

*

Undecidable!

These axioms define the 
semantics of ‘+’
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Example: First Order Presburger Arithmetic

  = {0,1,‘+’, ‘*’, ‘=’}
 Domain: Natural numbers

 Axioms (“semantics”):
1. � x : (0  x + 1) 
2. � x : � y : (x  y) � (x + 1  y + 1) 
3. Induction
4. � x : x + 0 = x 
5. � x : � y : (x + y) + 1 = x + (y + 1) 
6. � x : x * 0 = 0 
7. � x � y : x * (y + 1) = x * y + x 

+

*

decidable!

These axioms define the 
semantics of ‘+’
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Tradeoff: expressiveness/computational hardness.

 Assume we are given theories �1 � … � �n

More expressiveEasier to decide

UndecidableDecidable

Intractable
(exponential)

Tractable
(polynomial)

Computational 
Challenge! �n�1

Our course
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When is a specific theory useful? 

1. Expressible enough to state something interesting.
2. Decidable (or semi-decidable) and more efficiently 

solvable than richer theories.
3. More expressible, or more natural for expressing some 

models in comparison to ‘leaner’ theories.


