
The software model checker BLAST

Dirk Beyer, Thomas A. Henzinger,
Ranjit Jhala, Rupak Majumdar

Presented by Yunho Kim

Overview

Predicate abstraction is successfully applied to software
model checkingg

Infinite concrete states → finite abstract states
Tools: SLAM(MSR), BLAST(UCB), SATABS(CMU)

Cost for abstraction is still too high
O(2 # preds) abstract states
We need to abstract and refine locally, not globally

Blast proposed
Lazy abstractionLazy abstraction
Craig interpolation-based refinement

2 / 28 Yunho Kim@ pswlab The software model checker BLAST

Contents

Part I. Software Model Checking
Program behaviorProgram behavior
Predicate abstraction
Counterexample-guided abstraction refinement

Part II. BLAST
Abstraction and model checking
Craig interpolation-based refinement

3 / 28 Yunho Kim@ pswlab The software model checker BLAST

Behavior of program

Behavior of program can be modeled as a state transition
graph St t St tg p

2 3 4 5 6
2 3

State
Transition

lock(); lock(); R E

State
…………

52 3 4 5 6

pc a 2
old a 1
new a 2

pc a 3
old a 2
new a 2

old = new;old = new;
R

5

E5

2 3 4 5 6 1: Example() {
2: do {
1: Example() {
2: do {

new a 2
lock a 0

new a 2
lock a 1

R E5
{
lock();
old = new;

3: if (*) {
4: unlock();

{
lock();
old = new;

3: if (*) {
4: unlock();

5

2 3 4 5 6 new++;
}

5: } while (new != old);
6: unlock();

new++;
}

5: } while (new != old);
6: unlock();

R E5

4 / 28 Yunho Kim@ pswlab The software model checker BLAST

return;
}

return;
}

The safety verification

Is there a path from an initial to an error state ?

2 3 4 5 6 R E Error states
…………

5

5

2 3 4 5 6 R

5

E5

2 3 4 5 6 R

5

E5

Initial states

5

5 / 28 Yunho Kim@ pswlab The software model checker BLAST

Abstract behavior of program

Equivalent states satisfy same predicates and have same
control location State

They are merged into one abstract state

2 3 4 5 6 R E…………
2 3

State
Transition

pc 2 pc 3
lock();
old = new;
lock();
old = new;52 3 4 5 6 R

5

E pc a 2
old a 1
new a 2
new a 0

pc a 3
old a 2
new a 2
new a 1

old new;old new;5

2 3 4 5 6 R

5

E

new a 0 new a 1
Abs.
state Abs.

transition

5

2 3 4 5 6 R

5

E

pc a 2
p1
¬p2

pc a 3
¬p
p2

transition

lock();
old = new;
lock();
old = new;

5
old new;old new;

p1 , (lock = 0)
p2 , (lock = 1)

LOCK = 0

LOCK = 1

LOCK = 1

LOCK = 0

LOCK = 1

LOCK = 1

LOCK = 0

6 / 28 Yunho Kim@ pswlab The software model checker BLAST

Over-approximation

If there exists a transition between s1 and s2, then also
there exists a transition between abstract state of s1 and s21 2

2 3 4 5 6 R E
…………

5

5

2 3 4 5 6 R

5

E5

2 3 4 5 6 R

5

E5

LOCK = 0
LOCK = 1

LOCK = 1
LOCK = 0

LOCK = 1
LOCK = 1

LOCK = 0

7 / 28 Yunho Kim@ pswlab The software model checker BLAST

CEGAR

CounterExample-Guided Abstraction Refinement

C program P
S

Lazy
abstraction

Spec φ OK

Craig
interpolation- Feasible?Feasible?

ERROR +
Error traceNew predicate

based
Refinement

Feasible?Feasible?
Infeasible
path

counterexample

8 / 28 Yunho Kim@ pswlab The software model checker BLAST

Part II. BLAST

Abstraction and model checkingAbstraction and model checking

Craig interpolation-based refinement

9 / 28 Yunho Kim@ pswlab The software model checker BLAST

A locking example

lock() {
if (LOCK == 0) {

LOCK = 1;
} else {

ERROR
}

1: Example() {
2: do {

lock();
old = new; }

}

unlock() {
if (LOCK == 1) {

old = new;
3: if (*) {
4: unlock();

new++;
} () {

LOCK = 0;
} else {

ERROR
}

lock

}
5: } while (new != old);
6: unlock();

return;
} }

}
unlock

}

lockunlock

10 / 28 Yunho Kim@ pswlab The software model checker BLAST

Control Flow Automata for C programs

2
l k()

1: Example() {
2: do {

3
[T]

[T]
[new!=old]

lock()
old=new

lock();
old = new;

3: if (*) {
4: unlock();

4

5

[new!=old]

unlock()
new++

new++;
}

5: } while (new != old);
6: unlock();

t

6

[new==old]

unlock()
return;

} ret

Node corresponds to control location
Edge corresponds to either a basic block
or an assume predicate

11 / 28 Yunho Kim@ pswlab The software model checker BLAST

or an assume predicate

Reachability tree

Initial

2
Unroll Abstraction
1. Pick tree-node (=abs. state)

Initial

3

4

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

5

4

Fi d i f ibl t
6

Find infeasible trace
- Learn new predicates
- Rebuild subtree with new preds.

12 / 28 Yunho Kim@ pswlab The software model checker BLAST

Forward search(1/4)

2: do {
l k()

2 LOCK = 0
lock();
old = new;

3: if (*) {
4: unlock();

new++;new++;
}

5: } while (new != old);
6: unlock();

return;return;
Map P from Loc to set of predicates

Location Predicates
E h t d d t t l2 LOCK = 0, LOCK = 1

3 LOCK = 0, LOCK = 1

4 LOCK = 0 LOCK = 1

Each tree node corresponds to control
location and labeled with reachable region
Edge corresponds to either a basic block or

Reachability Tree

4 LOCK = 0, LOCK = 1

5 LOCK = 0, LOCK = 1

6 LOCK = 0, LOCK = 1

g p
an assume predicate

13 / 28 Yunho Kim@ pswlab The software model checker BLAST

Reachability Tree

Forward search(2/4)

2: do {
l k() 2 LOCK = 0lock();
old = new;

3: if (*) {
4: unlock();

new++;

2

3

lock()
old=new

LOCK = 0

LOCK = 1new++;
}

5: } while (new != old);
6: unlock();

return;

LOCK 1

Compute successors where op = ‘x:=e’ andreturn;
Map P from Loc to set of predicates

Location Predicates

Compute successors where op x: e and

Loc is successors’ program counter

SP(φ, x:=e) = φ [x’/x] Æ (x = e[x’/x])
2 LOCK = 0, LOCK = 1

3 LOCK = 0, LOCK = 1

4 LOCK = 0 LOCK = 1

SP(φ, x: e) φ [x /x] Æ (x e[x /x])

SP(φ, x:=e) w.r.t. P(Loc) = ψ s.t.

(1) SP(φ, x:=e) ⇒ ψ

Reachability Tree

4 LOCK = 0, LOCK = 1

5 LOCK = 0, LOCK = 1

6 LOCK = 0, LOCK = 1

(1) SP(φ, x: e) ⇒ ψ

(2) ψ is a boolean combination of P(Loc)

14 / 28 Yunho Kim@ pswlab The software model checker BLAST

Reachability Tree

Forward search(3/4)

2: do {
l k() 2 LOCK = 0lock();
old = new;

3: if (*) {
4: unlock();

new++;

2

3

lock()
old=new

LOCK = 0

LOCK = 1[T]new++;
}

5: } while (new != old);
6: unlock();

return;

4

LOCK 1[T]

LOCK = 1

Compute successors where op = ‘[pred]’ andreturn;
Map P from Loc to set of predicates

Location Predicates

Compute successors where op = [pred] and

Loc is successors’ program counter

SP(φ [pred]) = φ Æ [pred]2 LOCK = 0, LOCK = 1

3 LOCK = 0, LOCK = 1

4 LOCK = 0 LOCK = 1

SP(φ, [pred]) = φ Æ [pred]

SP(φ, [pred]) w.r.t. P(Loc) = ψ s.t.

(1) SP(φ [pred]) ⇒ ψ

Reachability Tree

4 LOCK = 0, LOCK = 1

5 LOCK = 0, LOCK = 1

6 LOCK = 0, LOCK = 1

(1) SP(φ, [pred]) ⇒ ψ

(2) ψ is a boolean combination of P(Loc)

15 / 28 Yunho Kim@ pswlab The software model checker BLAST

Reachability Tree

Forward search(4/4)

2: do {
l k()lock();
old = new;

3: if (*) {
4: unlock();

new++;

2
lock()
old=new

LOCK = 0 Counterexample trace

1: assume(true);
new++;

}
5: } while (new != old);
6: unlock();

return;

3

4

old=new

LOCK = 1[T]

l k()
LOCK = 1

2: lock = 1;

old = new;
return;

5

unlock()
new++

LOCK = 0
[new==old]

Map P from Loc to set of predicates
Location Predicates

3: assume(true);

4: lock = 0;

new++;

6

[new==old]

unlock()

LOCK = 0
2 LOCK = 0, LOCK = 1

3 LOCK = 0, LOCK = 1

4 LOCK = 0 LOCK = 1

new++;

5: assume(new==old);

6: assume(LOCK!=1);

Reachability Tree

err
4 LOCK = 0, LOCK = 1

5 LOCK = 0, LOCK = 1

6 LOCK = 0, LOCK = 1

16 / 28 Yunho Kim@ pswlab The software model checker BLAST

Reachability Tree

Feasibility checking

Counterexample trace

1 (t)

SSA form

1 (t)

Trace formula

1 t1: assume(true);

2: LOCK = 1;

old = new;

1: assume(true);

2: LOCK0 = 1;

old0 = new0;

1: true

2: Æ LOCK0 = 1;

Æ old0 = new0;

3: assume(true);

4: LOCK = 0;

0 0

3: assume(true);

4: LOCK1 = 0;

0 0

3: Æ true;

4: Æ LOCK1 = 0;

new++;

5: assume(new==old);

6: assume(LOCK! 1);

new1 = new0 + 1;

5: assume(new1==old0);

6: assume(LOCK ! 1);

Æ new1 = new0 + 1;

5: Æ new1==old0;

6: Æ LOCK !=1;6: assume(LOCK!=1); 6: assume(LOCK1!=1); 6: Æ LOCK1!=1;

Trace is feasible Trace formula is satisfiable

17 / 28 Yunho Kim @ pswlab Lazy Abstraction

Which predicate is needed?

Counterexample trace

1 (t)

Trace formula

1 t1: assume(true);

2: LOCK = 1;

old = new;

1: true

2: Æ LOCK0 = 1;

Æ old0 = new0;

3: assume(true);

4: LOCK = 0;

0 0

3: Æ true;

4: Æ LOCK1 = 0;

new++;

5: assume(new==old);

6: assume(LOCK! 1);

Æ new1 = new0 + 1;

5: Æ new1==old0;

6: Æ LOCK ! 1;6: assume(LOCK!=1); 6: Æ LOCK1!=1;

Relevant information
1 Can be obtained after executing trace

Relevant predicate
1 Implied by TF preffix1. Can be obtained after executing trace

2. has present values of variables
3. Makes trace suffix infeasible

1. Implied by TF preffix
2. On common variables
3. TF suffix is unsatisfiable

18 / 28 Yunho Kim @ pswlab Lazy Abstraction

Craig interpolant

Given a pair (φ-, φ+) of formulas, an interpolant for (φ-, φ+)
is a formula ψ such thatψ

(i) φ- ⇒ ψ

(ii) ψ Æ φ+ is unsatisfiable() ψ Æ φ s u sat s ab e
(iii) the variables of ψ are common to both φ- and φ+

If φ- Æ φ+ is unsatisfiable, then an interpolant always
exists, and can be computed from a proof of , p p
unsatisfiability of φ- Æ φ+

19 / 28 Yunho Kim@ pswlab The software model checker BLAST

Craig interpolant

Counterexample trace

1 (t)

Trace formula

1 t1: assume(true);

2: LOCK = 1;

old = new;

1: true

2: Æ LOCK0 = 1;

Æ old0 = new0;
φ-

Interpolant ψ
3: assume(true);

4: LOCK = 0;

0 0

3: Æ true;

4: Æ LOCK1 = 0;

φ+
p ψ

old0 = new0
Interpolant ψ
ldnew++;

5: assume(new==old);

6: assume(LOCK! 1);

Æ new1 = new0 + 1;

5: Æ new1==old0;

6: Æ LOCK ! 1;

old0 = new0
Interpolant ψ
Old0 != new06: assume(LOCK!=1); 6: Æ LOCK1!=1;

Relevant predicate
1. Implied by TF suffix

ψ is a formula such that
1. φ- ⇒ ψ

Old0 ! new0

p y
2. On common variables

3. Æ TF suffix is unsatisfiable

φ ψ
2. ψ only contains common

variables of φ– and φ+

3. ψ Æ φ+ is unsatisfiable

20 / 28 Yunho Kim @ pswlab Lazy Abstraction

Search with new predicates(1/3)

2: do {
l k()lock();
old = new;

3: if (*) {
4: unlock();

new++;

2
lock()
old=new

LOCK = 0

new++;
}

5: } while (new != old);
6: unlock();

return;

3

old=new

LOCK = 1 Æ new = old

return;
Map P’ from loc to set of predicates

Location Predicates

2 LOCK = 0, LOCK = 1,

3 LOCK = 0, LOCK = 1, old = new

4 LOCK = 0 LOCK = 1 old = new4 LOCK = 0, LOCK = 1, old = new

5 LOCK = 0, LOCK = 1, old != new

6 LOCK = 0, LOCK = 1

21 / 28 Yunho Kim @ pswlab Lazy Abstraction

Search with new predicates(2/3)

2: do {
l k()lock();
old = new;

3: if (*) {
4: unlock();

new++;

2
lock()
ld

LOCK = 0

new++;
}

5: } while (new != old);
6: unlock();

return;

3

4

old=new

LOCK = 1 Æ new = old[T]

LOCK = 1 Æ new = old
return;

5

unlock()
new++

LOCK = 0 Æ new ≠ old
[new!=old]

Map P’ from loc to set of predicates
Location Predicates

2

[new!=old]

LOCK 0

2 LOCK = 0, LOCK = 1,

3 LOCK = 0, LOCK = 1, old = new

4 LOCK = 0 LOCK = 1 old = new LOCK = 0 Æ
new ≠ old

COVERED

4 LOCK = 0, LOCK = 1, old = new

5 LOCK = 0, LOCK = 1, old != new

6 LOCK = 0, LOCK = 1

22 / 28 Yunho Kim @ pswlab Lazy Abstraction

Search with new predicates(3/3)

2: do {
l k()lock();
old = new;

3: if (*) {
4: unlock();

new++;

2
lock()
old=new

LOCK = 0

new++;
}

5: } while (new != old);
6: unlock();

return;

3

4

old=new

LOCK = 1 Æ new = old[T]

l k()
LOCK = 1 Æ new = old

[T]return;

5

unlock()
new++

LOCK = 0 Æ new ≠ old
[new!=old]

5

[]

LOCK = 1 Æ new = old
[new==old]

6

FALS
E

2

[]

LOCK = 0 Æ

2 6

[new==old]

FALS
E

LOCK = 1 Æ new = old

unlock()
ELOCK = 0 Æ

new ≠ old

COVERED

E
ret LOCK = 0 Æ new = old

Safe!

23 / 28 Yunho Kim @ pswlab Lazy Abstraction

Local predicate use

Use predicates needed at location

• #Preds. grows with program size

• #Preds per location is small• #Preds per location is small

Local Predicate use
Ex: 2n states

Global Predicate use
Ex: 2n states

24 / 28 Yunho Kim @ pswlab Lazy Abstraction

Experiments

funlock.c is an example we covered
driver c is a Windows driver for verifying lockingdriver.c is a Windows driver for verifying locking
discipline
read c floppy c are drivers from Windows DDKread.c, floppy.c are drivers from Windows DDK
qpmouse.c and llrw_block.c are drivers from Linux
Experiments ran on 800MHz PIII with 256M RAM

25 / 28

Experiments ran on 800MHz PIII with 256M RAM
Yunho Kim @ pswlab Lazy Abstraction

Conclusions

BLAST is a software model checker for verifying program
written in C languageg g

BLAST improves the scheme of CEGAR by implementing
lazy abstractiony

avoids redundant abstraction and checking
Predicates are locally applied and states are locally abstracted

26 / 28 Yunho Kim @ pswlab Lazy Abstraction

Reference

The Software Model Checker Blast: Applications to Software
Engineering.
by Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala,
and Rupak Majumdar
in Int Journal on Software Tools for Technology Transfer 2007in Int. Journal on Software Tools for Technology Transfer, 2007
Lazy abstraction
by Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and by o as e ge , a j t J a a, upa aju da , a d
Grégoire Sutre
in ACM SIGPLAN – SIGACT Conference on

P i i l Of P i L 2000Principle Of Programming Language 2000
Abstractions from Proofs
by Thomas A Henzinger Ranjit Jhala Rupak Majumdar and Kennethby Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and Kenneth
L. McMillan
in ACM SIGPLAN-SIGACT Conference on

27 / 28

Principles of Programming Languages, 2004
Yunho Kim @ pswlab Lazy Abstraction

Reference

Lazy Abstraction slides
by Jinseong Jeonby Jinseong Jeon
in CS750 class, Fall, 2006
Software Verification with BLAST slidesSoftware Verification with BLAST slides
by Tom Henzinger, Ranjit , Rupak Majumdar
in SPIN workshop 2005 tutoria φ ψin SPIN workshop 2005 tutoria φ ψ

28 / 28 Yunho Kim @ pswlab Lazy Abstraction

