NSNS s sSsSaaeasasaeaoaaoon

The software model checker BLAST

Dirk Beyer, Thomas A. Henzinger,
Ranjit Jhala, Rupak Majumdar

Presented by Yunho Kim

Overview
) G))) & & D 0

m Predicate abstraction is successfully applied to software

model checking
e Infinite concrete states — finite abstract states

e Tools: SLAM(MSR), BLAST(UCB), SATABS(CMU)

m Cost for abstraction is still too high
e O(2#preds) gbstract states
e \We need to abstract and refine locally, not globally

m Blast proposed
e Lazy abstraction
e Craig interpolation-based refinement

Yunho Kim@ pswlab The software model checker BLAST 2128

Contents

e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0
m Part |. Software Model Checking

e Program behavior
e Predicate abstraction
e Counterexample-guided abstraction refinement

m Part ll. BLAST

e Abstraction and model checking
e Craig interpolation-based refinement

Yunho Kim@ pswlab The software model checker BLAST 3/28

Behavior of program

NS —I—S—S—S— SNy sl S S O o 00

m Behavior of program can be modeled as a state transition

graph //State State\

O 00 000 000 0 00 TranS|t|0n
2 —>13 =>4 (5 6 >R 'E lockQ);
<4 old = new;
pCc > 2 pc— 3
5 old — 1 old— 2
new — 2 new — 2
// \jl:' \IQCKHO IockHy
4 (5 (5 ->(6—=>0R = 1: Example(Q) {
2: do {
lock();
3] old = new;
3: it
// T 4: Iuglgci();
2> - 6 -0 (E }”eW++;
N~ A 5: } while (new != old);
6: unlock(Q);
return;

Yunho Kim@ pswlab The software model checker BLAST 4128

The safety verification

m Is there a path from an initial to an error state ?

Initial states

Yunho Kim@ pswlab

o~ |
E

The software model checker BLAST

NS —I—S—S—S— SNy sl S S O o 00

Error states

5/28

Abstract behavior of program

NS —I—S—S—S— SNy sl S S O o 00

m Equivalent states satisfy same predicates and have same

control location State \
Transition
2

e They are merged into one (3
2 3 ZM édﬁo ° E lock();
> > old = new;
pc— 2 * pcH—3
N —1 old - 1 old - 2
>‘Z— 5 new — 2 new — 2
//5/, B new — 0 new — 1
?2 1>(3 >4 5 —=6—pR | E Abs.
— _|= state ~ Abs.
5 transition
pc — 2 pc— 3
VA1t p IR aa
21>8 >4 5 |5 —6—R |E P2 | 9SO p2
_/4
LOCK=0 LOCK=1 LOCK=1 LOCK =0 p1 = (lock = 0)

A —
LOCK=1 LOCK=0 LOCK-="1 \ p2 = (lock =1) /

Yunho Kim@ pswlab The software model checker BLAST 6/28

Over-approximation

NS —I—S—S—S— SNy sl S S O o 00

m [f there exists a transition between s, and s,, then also
there exists a transition between abstract state of s, and s,

LOCK =0 LOCK =1 LOCK =1 LOCK =0
LOCK =1 LOCK =0 LOCK =1

Yunho Kim@ pswlab The software model checker BLAST 7128

CEGAR

NS —I—S—S—S— SNy sl S S O o 00

m CounterExample-Guided Abstraction Refinement

C program P
Spec ¢ Ly OK
> : >
abstraction
New predlicate Error trace
Craig ERROR +
interpolation- ;
based N -
Refinement Infeasib counterexample
path

Yunho Kim@ pswlab The software model checker BLAST 8/28

Part Il. BLAST

NS —I—S—S—S— SNy sl S S O o 00

m Abstraction and model checking

m Craig interpolation-based refinement

Yunho Kim@ pswlab The software model checker BLAST 9/28

A locking example

NS —I—S—S—S— SNy sl S S O o 00

lock(O {
iIT (LOCK == 0) {
LOCK = 1;
%: gxa?ple() { } else {
: o]
1SckO) - ERROR
old = new; }
LN N O ¥
4: unloc ;
i lock
y news. unigc(fgci == 1) {
) _ _] LOCK = 0;
R
return; ERROR
}) }

unlock ‘ lock

Yunho Kim@ pswlab The software model checker BLAST 10/28

Control Flow Automata for C programs
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

1: Example(Q {
2: do {

IOCk(); [neW!:OId]
- C-)Id i new. unlock()
3: it &) { nEWA+
4: unlock();
new++; [new==0ld]

}
5: 3} while (new != old);
6: unlock(Q); [unlockQ)
return;

m Node corresponds to control location

m Edge corresponds to either a basic block
or an assume predicate

Yunho Kim@ pswlab The software model checker BLAST 11/28

Reachability tree
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

nitial Unroll Abstraction
1 1. Pick tree-node (=abs. state)
3 2. Add children (=abs. successors)
y 3. On re-visiting abs. state, cut-off
N\
S
“ Find infeasible trace
- Learn new predicates
U - Rebuild subtree with new preds.

Yunho Kim@ pswlab The software model checker BLAST 12/28

Forward search(1/4)

NS —I—S—S—S— SNy sl S S O o 00

2: do { =
KO (2) Lock =0
old = new;

3: it () {

4: unlock();

new++;

+
5: 3} while (new != old);
6: unlock();
return;

Map P from Loc to set of predicates

Location Predicates

2 LOCK = 0, LOCK = 1 m Each tree node corresponds to controi

3 LOCK = 0. LOCK = 1 location and labeled with reachable region

4 LOCK = 0, LOCK = 1 = Edge corresponds to either a basic block or
an assume predicate

5 LOCK =0, LOCK = 1

° LOCK =0, LOCK =1 Reachability Tree

Yunho Kim@ pswlab The software model checker BLAST 13/28

Forward search(2/4)

NS —I—S—S—S— SNy sl S S O o 00

2: do
|_ Iock()
old = new;
3: it () {
4: unlock();
new++;

5: } %hile (new = old);

6: unlock();
return;

Map P from Loc to set of predicates

Location

Predicates

LOCK =0, LOCK=1

LOCK =0, LOCK = 1

LOCK =0, LOCK =1

LOCK =0, LOCK=1

|l]| WD

LOCK =0, LOCK = 1

Yunho Kim@ pswlab

LOCK =0
lock()
old=new

<:>IJ3CK::1

Compute successors where op = x:=e’ and
Loc is successors’ program counter
SP(¢, x:=e) = ¢ [X/x] A (x = e[x'/x])

SP(¢, x:=e) w.r.t. P(Loc) = ¢ s.t.
(1) SP(¢, x:=e) = ¢

(2) v is a boolean combination of P(Loc)

Reachability Tree

The software model checker BLAST 14 /28

Forward search(3/4)

NS —I—S—S—S— SNy sl S S O o 00

2: do {

lock(); LOCK =0

old = new, lock()
. L (i) E old=new
4: unTock();

”eW++;O 1 £ Lock = 1

} ju
5: 3} while (new != old); (4) LOCK =1
6: unlock();

return; Compute successors where op = ‘[pred]’ and

Map P from Loc to set of predicates

Loc is successors’ program counter

Location Predicates

2 LOCK = 0, LOCK = 1 SP(¢, [pred]) = ¢ A [pred]

3 LOCK =0, LOCK = 1 SP(¢, [pred]) w.r.t. P(Loc) = v s.t.

4 LOCK =0, LOCK = 1 (1) SP(¢, [pred]) = ¢

0 LOCK =0, LOCK =1 (2) ¢ is a boolean combination of P(Loc)
° LOCK =0, LocK=1 Reachability Tree

Yunho Kim@ pswlab The software model checker BLAST 15/28

Forward search(4/4)

NS —I—S—S—S— SNy sl S S O o 00

2: do {
lockQ;
old = new;
3- it (%) { LOCK = 0 | Counterexample trace
4: unlock(); lock()] i
new++: old=rew | L- assume(true);
5. 3} \:/}vhiJe (new '= old): [T] (3) Lock =1 |27 lock = 1;
6: unlock(); LOCK =1 old = new;
retart,] unlock()) i
Map P from Loc to set of predicates new++ 3: assume(true);
Location Predicates LOCK =0 4: lock = 0;
2 LOCK = 0, LOCK = 1 [new==old] new-++;
3 LOCK = 0. LOCK = 1 LOCK =0 5: assume(new==0ld);
4 LOCK =0. LOCK = 1 ULEE L0, 6: assume(LOCK!=1);
5 LOCK =0, LOCK =1
° LOCK =0, LOCK =1 Reachability Tree

Yunho Kim@ pswlab

The software model checker BLAST 16 /28

Feasibility checking

NS —I—S—S—S— SNy sl S S O o 00

Counterexample trace SSA form Trace formula

1: assume(true); 1: assume(true); 1: true

2. LOCK = 1; 2: LOCK, = 1; 2: N LOCK, = 1;
old = new; old, = new,; A oldy = newg;

3: assume(true); 3: assume(true); A true;

4: LOCK = O; 4: LOCK; = O; 4: N LOCK; = 0O;
new++; new, = new, + 1; A new; = new, + 1;

5: assume(new==0ld); 5: assume(new,==old,); 5: N new;==oldg;

6: assume(LOCK!=1); 6: assume(LOCK,!=1); 6: A LOCK;!=1;

Trace is feasible < Trace formula is satisfiable

Yunho Kim @ pswlab Lazy Abstraction 17128

Which predicate is needed?

NS —I—S—S—S— SNy sl S S O o 00

o

Counterexample trace
1:
2:

assume(true);
LOCK = 1;

old = new;

3: assume(true);
: LOCK = O;

new++;

- assume(new==o0ld);

Ve

1A

- Ao ~L1 NN 1\ =
- aAooUlllIe LULVNZI—1),

Relevant information

1. Can be obtained after executing trace

2. has present values of variables
3. Makes trace suffix infeasible

Yunho Kim @ pswlab

Lazy Abstraction

Trace formula
1: true
2: N LOCK, = 1;
A old, = new,;
A true;
4: N LOCK; = O;
A new; = new, + 1;
5: A new;==old,;
6: A LOCK,!'=1;

Relevant predicate

1. Implied by TF preffix

2. On common variables
3. TF suffix is unsatisfiable

18/28

Cralg interpolant

NS —I—S—S—S— SNy sl S S O o 00

m Given a pair (¢, ¢*) of formulas, an interpolant for (¢, ¢*)
Is a formula) such that

(i) ¢~ = 1
(i) ¢ N\ ¢* is unsatisfiable
(iii) the variables of) are common to both ¢~ and ¢*

m If o A ¢* is unsatisfiable, then an interpolant always

exists, and can be computed from a proof of
unsatisfiability of ¢~ A ¢*

Yunho Kim@ pswlab The software model checker BLAST 19/28

Cralg interpolant

NS —I—S—S—S— SNy sl S S O o 00

o

1:
2:

Interpolant

old, = new,

Interpolant
old, = new,

Counterexample trace Trace formula
assume(true); 1: true
LOCK = 1; 2: AN LOCK, = 1; i
old = new; A oldy, = newg; ¢
3: assume(true); A true; oF
- LOCK = 0; 4: N LOCK; = O; |
new++; A new; = new, + 1;
- assume(new==o0ld); 5: N new;==oldg;
- assume(LOCK!=1); 6: A LOCK;!=1;

Relevant predicate
1. Implied by TF suffix
2. On common variables

3. A TF suffix is unsatisfiable

Yunho Kim @ pswlab

Lazy Abstraction

Interpolant
Old, "= new,

Y is a formula such that

1. ¢ =
2. ¢ only contains common
variables of ¢~ and ¢*

3. Y A ¢* is unsatisfiable

20/ 28

Search with new predicates(1/3)
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

2 do {
|_ lockQ;
old = new;
3 it () { LOCK =0
4 unlock(); lock(Q)
new++; old=new

5: 3} while (new != old); (@ Lock =1 A new = old

6: unlock();
return;

Map P’ from loc to set of predicates

Location Predicates

2 LOCK =10, LOCK =1,

LOCK =0, LOCK =1, old = new

LOCK =0, LOCK =1, old = new

LOCK =0, LOCK =1, old |= new

Ol O] | W

LOCK =0, LOCK =1

Yunho Kim @ pswlab Lazy Abstraction 21/28

Search with new predicates(2/3)
e SSSSSSEEEE——SSSSsSsSssSSsSs S ssSsy Dy e o e oo o0

2: do {
lock(Q);
old = new;
3: it (™) { LOCK =0
4: unlock(); %) lockQ
new++; old=new

LOCK =1 A new = old

5: } %hile (new = old);

6T UNTOCR(Y; LOCK =1 A new =old
return; unlock()
Map P’ from loc to set of predicates I
Location Predicates LOCK =0 A new = ol “’3
[new!=0ld]
2 LOCK=0, LOCK =1,

LOCK =0, LOCK =1, old = new

LOCK =0, LOCK =1, old = new LOCK =0 A

LOCK =0, LOCK=1,0ld!=new | nhew = old

Ol O] | W

LOCK =0, LOCK =1 COVERED

Yunho Kim @ pswlab Lazy Abstraction 22128

Search with new predicates(3/3)

NS —I—S—S—S— SNy sl S S O o 00

2: do {
lock();
old = new;
3- if () { LOCK =0
4: unlock(); lock(Q)
new++; old=new
+ _ _
6: unlock(); LOCK =1 A new =old
return; unlock() [T]
new++
LOCK =0 A new = old(s5) e LOCK =1 A new = old
[new!=0ld]
— FALS FALS unlock()
LOCK =0 A E E
new = old LOCK =0 A new = old

COVERED Safe |

Yunho Kim @ pswlab Lazy Abstraction 23128

Local predicate use

NS —I—S—S—S— SNy sl S S O o 00

m Use predicates needed at location

#Preds. grows with program size

#Preds per location is small

Local Predicate use Global Predicate use
Ex: 2n states Ex: 2" states

Yunho Kim @ pswlab Lazy Abstraction 24128

Experiments

NS —I—S—S—S— SNy sl S S O o 00

Namc LOC Predicates Thm Prover Calls [Running
Total | Active | Total [Cached | Time (s)
driver.c 95 3 3 260 165 0.08
funlock.c 40 | 3 340 182 0.14
Tead.c 370 28 18 5643 2862 4.42
floppy.c 6473 5 5 4137 3759 2.05
qpmouse.c 400 3 3 3117 2925 0.74
11_rw_block.c | 1281 9 7 10143 9483 5.82
m funlock.c is an example we covered
L PPN [P - .A...C.-......-...: ..:...A. .-.A,:..-.A.
] UIIVBI C Ib d VVIIIUUWb ariver 10r veri yirg 10CKINg

discipline
m read.c, floppy.c are drivers from Windows DDK
m gpmouse.c and lirw_block.c are drivers from Linux
m Experiments ran on 800MHz PIII with 256M RAM

Yunho Kim @ pswlab Lazy Abstraction 25/ 28

Conclusions
) G))) & & D 0

m BLAST is a software model checker for verifying program
written in C language

m BLAST improves the scheme of CEGAR by implementing
lazy abstraction
e avoids redundant abstraction and checking
e Predicates are locally applied and states are locally abstracted

Yunho Kim @ pswlab Lazy Abstraction 26 /28

Reference
) G))) & & D 0

m The Software Model Checker Blast: Applications to Software
Engineering.
by Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala,
and Rupak Majumdar
in Int. Journal on Software Tools for Technology Transfer, 2007
m Lazy abstraction

by Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Greégoire Sutre

in ACM SIGPLAN — SIGACT Conference on
Principle Of Programming Language 2000
m Abstractions from Proofs

by Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and Kenneth
L. McMillan

in ACM SIGPLAN-SIGACT Conference on
Principles of Programming Languages, 2004
Yunho Kim @ pswlab Lazy Abstraction 27128

Reference
) G))) & & D 0

m Lazy Abstraction slides
by Jinseong Jeon
iIn CS750 class, Fall, 2006
m Software Verification with BLAST slides
by Tom Henzinger, Ranjit , Rupak Majumdar
in SPIN workshop 2005 tutoria ¢ v

Yunho Kim @ pswlab Lazy Abstraction 28128

