SAT Solver Heuristics



SAT-solver History

Started with David-Putnam-Logemann-Loveland (DPLL) (1962)
— Able to solve 10-15 variable problems

Satz (Chu Min Li, 1995)
— Able to solve some 1000 variable problems

Chaff (Malik et al., 2001)
— Intelligently hacked DPLL , Won the 2004 competition
— Able to solve some 10000 variable problems

Current state-of-the-art

— MiniSAT and SATELITEGTI (Chalmer’s university, 2004-2006)
— Jerusat and Haifasat (Intel Haifa, 2002)

— Ace (UCLA, 2004-2006)



MInISAT

 MiniSat is a fast SAT solver developed by Niklas Eén an
d Niklas SOrensson
— MiniSat won all industrial categories in SAT 2005 competition
— MiniSat won SAT-Race 2006

e MiniSat is simple and well-documented
— Well-defined interface for general use
— Helpful implementation documents and comments

— Minimal but efficient heuristic
« Main.C (344 lines)
e Solver.C (741 lines)

3/28



Overview (1/2)

A set of propositional variables and CNF clauses
Involving variables

— (X VX"V Xg) A (X VX"V Xy)
— Xy, X5, X3 @nd x, are variables (true or false)

Literals: Variable and its negation
— X, and x’

A clause is satisfied if one of the literals is true
— X,=true satisfies clause 1
— X,=false satisfies clause 2

Solution: An assignment that satisfies all clauses



Overview (2/2)

« Unit clause is a clause in which all but one of literals is assigned to
False

e Unit literal is the unassigned literal in a unit clause

(Xg) A
(-XgVX)A
(=X, V=X3V =X4) A

— (Xp) Is a unit clause and ‘x,’ is a unit literal
— (%o VXy) Is a unit clause since X, has to be True

— (-x, VX3V -X,) can be a unit clause if the current assignment is that x;
and x, are True

* Boolean Constrain Propagation(BCP) is the process of assigning
the True value to all unit literals

5/28



DPLL Overview (1/3)

/* The Quest for Efficient Boolean Satisfiability Solvers
* by L.Zhang and S.Malik, Computer Aided Verification 2002 */
DPLL(a formula *, assignment) {
necessary = deduction( ", assignment);
new_asgnment = union(necessary, assignment);
if (is_satisfied( ", new_asgnment))

return SATISFIABLE; Three technigues added
else if (is_conflicting(", new_asgnmnt)) to modern SAT solvers
return UNSATISFIABLE; 1. Learnt clauses
var = choose free variable(", new_asgnmnt); 2. Non—chronological
asgnl = union(new_asgnmnt, assign(var, 1)); backtracking
if (DPLL(", asgnl) == SATISFIABLE) 3. Restart
return SATISFIABLE;
else {

asgn2 = union (new_asgnmnt, assign(var,0));
return DPLL (', asgn2);

6/28



DPLL Overview (2/3)

P VI}AN{—=pV -qVr}A{pV -r}

p=T p=F

{TVr} AN{=TV =g V r} A{T V =r} {FVr} N{=FV-aq Vr} A{FV —r}

SIMPLIFY SIMPLIFY

{ry A=r}
|

{_'q , r}

SIMPLIFY

{

7/28



DPLL Overview (3/3)

/* overall structure of Minisat solve procedure */
Solve(){
while(true){
boolean_constraint_propagation();
if(no_conflict){
if(no_unassigned_variable) return SAT,;
make_decision();

telse{
if (no_decisions_made) return UNSAT;
analyze_conflict();
undo_assignments();
add_conflict_clause();

}

8/28



Conflict Clause Analysis (1/10)

» A conflict happens when one clause is falsified
by unit propagation

Assume x, is False
(X;VvXx4) A

(-%;VX,) A

(-%,VX3) A
(-x3Vv-x,V-X,) Falsified!
Omitted clauses

e Analyze the conflicting clause to infer a clause
— (-X3V -X, V -X,) Is conflicting clause

 The inferred clause is a new knowledge
— A new learnt clause is added to constraints



Conflict Clause Analysis (2/10)

* Learnt clauses are inferred by conflict analysis

(X1VX,) A

(-X1VX3) A
(-X,VX3) A
(-X3V-X,V-X;) A
omitted clauses A
(x4)1j_earnt clause

 They help prune future parts of the search space
— Assigning False to x, is the casual of conflict
— Adding (X,) to constraints prohibit conflict from —x,

e Learnt clauses actually drive backtracking



Conflict Clause Analysis (3/10)

[* conflict analysis algorithm */
Analyze_conflict(){
cl = find_conflicting_clause();

[* Loop until cl is falsified and one literal whose value is determined in current
decision level is remained */

While(!stop_criterion_met(cl)){
lit = choose_literal(cl); /* select the last propagated literal */
Var = variable_of_literal(lit);
ante = antecedent(var);
cl = resolve(cl, ante, var);
}
add_clause_to_database(cl);

/* backtrack level is the lowest decision level for which the learnt clause is unit
clause */

back _dl = clause asserting level(cl);
return back_dl;

Algorithm from Lintao Zhang and Sharad malik
“The Quest for Efficient Boolean Satisfiability Solvers”

11/28



Conflict Clause Analysis (4/10)

« Example of conflict clause analysis
—a, b,c,d, e, f g,and h: 8 variables ( 28 cases)

(-fve) A Satisfiable?

dv-bvh) A Unsatisfiable?




Conflict Clause Analysis (5/10)

Assignments | antecedent
e=F 7 assumption
f=F fve

g=F ("~ Dlevel=1 v

h=F -hvg

a=F ~ assumption
=T | pieweln|bvave
c=T cvevfv-b
d=T J dv-bvh

F

S

a=F
Conflict

-bv-cv-d

Example slides are from CMU 15-414 course ppt



Conflict Clause Analysis (6/10)

Assignments | antecedent

e=F 7 assumption e=F
f=F . |fve

g=F S -gvf a=F

h=F -hvg

a=F ~ assumption -bv-cv-d
b=T |  |bvave

e G B

d=T J dv-bvh




Resolution

e Resolution Is a process to generate a
clause from two clauses

e Given two clauses (xVy) and (-y V z),
the resolvent of these two clauses Is (
XV Z)
—(xVy) AN(-yV z) is satisfiable iff

(XVY)N(-yVzZ)A(xV z)is satisfiable

— The resolvent is redundant



Conflict Clause Analysis (7/10)

Assignments | antecedent

e=F 7 assumption e=F
f:F (Y| =1 _fve
g=F " -gvf a=F

h=F J -hvg
a=F assumption

b=T bvave ov-Cv

- vaVv

Stevet=s (a resolvent of

c=T cvevfiv-b -bv-cv-d
d:T J dv_bvh and dv‘bvh)




Conflict Clause Analysis (8/10)

Assignments | antecedent
e=F 7 assumption e=F
f:F Nl -1 _fve
g=F " -gvf a=F
h=F J -hvg
a=F assumption
-bv-cvh
b=T bvave
Dtevet=2
c=T cvevfv-b
d=T J dv-bvh




Conflict Clause Analysis (9/10)

Assignments | antecedent
e=F 7 assumption
f=F | fve

g=F ? CCCCCCC -gvf

h=F -hvg

a=F ~ assumption
b=T |  |bvave
C:T vLevel=2 Cveva_b
d=T J dv-bvh

F

S

F

d

-bvevfvh learnt clause



Conflict Clause Analysis (10/10)

Assignments | antecedent

e=F 7 assumption

f=F fve

g=F DLevel=1 —gvf

h=F -hvg
gi@;b:F‘J -bvevfvh

level 1

F

d

pv-cv-d
ov-cvh

pvevivh

F

S

b=F



Variable State Independent Decaying
Sum(VSIDS)

Decision heuristic to determine what variable will be
assigned next

Decision is independent from the current assignment of
each variable

VSIDS makes decisions based on activity

— Activity is a literal occurrence count with higher weight on the
more recently added clauses

— MIiniSAT does not consider any polarity in VSIDS
« Each variable, not literal has score

activity description from Lintao Zhang and Sharad malik
“The Quest for Efficient Boolean Satisfiability Solvers”

20/28



VSIDS Decision Heuristic —
MINISAT style (1/8)

* Initially, the score for each variable is 0

« First make a decision e = False
— The order between same score is unspecified.
— MiniSAT always assigns False to variables.

iabl Val
Initial constraints m
(-fve) A a 0
(-gi) A b 0
(bvave) A ; n
(cvevfv-b) A
(-hvg) A d 0
(dV-bvh) A e 0 F
('bV'CV'd) JAN f 0
(cvd) g 0

h 0

21/28



VSIDS Decision Heuristic (2/8)

« f, g, hare False after BCP

| Variable | Score | Value
0

(-fve) A |
(-gvf) A b v
(bvave) A C 0
(cvevfv-b) A d 0
(-hvg) A
(dv-bvh) A € P F
(-bv-cv-d) A f 0 F
(cvd) g 0 F

h 0 F

22/28



VSIDS Decision Heuristic (3/8)

a Is next decision variable

(bvave) A
(cveviv-b) A
(-hvg) A
(dv-bvh) A
(-bv-cv-d) A
(cvd)

| Variable | Score | Value
a 0 F
b 0
C 0
d 0
e 0 F
f 0 F
g 0 F
h 0 F

23/28



VSIDS Decision Heuristic (4/8)

b, c are True after BCP

Conflict occurs on variable d
— Start conflict analysis

(-hvg) A
(-bv-cv-d)

| Variable | Score | Value
a 0 F
b 0 T
C 0 T
d 0 T
e 0 F
f 0 F
g 0 F
h 0 F

24/28



VSIDS Decision Heuristic (5/8)

 The score of variable in resolvents is increased by 1
— Even if a variable appears in resolvents two or mores increase the

score just once

(-fve) A
(-gvf) A
(bvave) A
(cvevfv-b) A
(-hvg) A
(dv-bvh)
(-bv-cv-d)
(cvd)

| Variable | Score | Value_

Resolvent on d
-bv-cvh

a

> Q —+~ o O o O

= O O O O +H +H O

F
T
T
T
F
F
F
F

25/28



VSIDS Decision Heuristic (6/8)

 The end of conflict analysis
 The scores are decaying 5% for next scoring

| Variable | Score | Value_

(-fve) A
(-gvf) A
(bvave) A
(cvevfv-b) A
(-hvg) A
(dv-bvh) A
(-bv-cv-d) A
(cvd)

Resolvents
-bv-cvh
-bvevfvh €&
learnt clause

a

> QO —+~ o O o O

0
0.95
0.95

0
0.95
0.95

0
0.95

F
T
T
T
F
F
F
F

26/28



VSIDS Decision Heuristic (7/8)

e bis now False and a is True after BCP

 Next decision variable is ¢ with 0.95 score

Learnt clause (-bvevfvh)

| Variable | Score | Value_

a

> Q —+~ o O o O

0
0.95
0.95

0

0.95
0.95
0
0.95

T
F

M T T m

27/28



VSIDS Decision Heuristic (8/8)

* Finally we find a model!

Learnt clause (-bvevfvh)

| Variable | Score | Value
a 0 T
b 0.95 F
C 0.95 F
d 0 T
e 0.95 F
f 0.95 F
g 0 F
h 0.95 F

28/28



