WHY Tutorial

Moonzoo Kim

Provable Software
Laboratory

CS Dept. KAIST

Why is [p_software verification platform.]

This platform contains several tools:

« a general-purpose verification condition generator (VCG), Why, which is used as a back-end by other verification
tools (see below) but which can also be used directly to verify programs (see for instance these examples) ;

+ a tool Krakatoa for the verification of Java programs;

+ a tool Caduceus for the verification of C programs; note that Caduceus is somewhat obsolete now and users
should turn to Frama-C instead.

One of the main features of Why is to be integra
Isabelle/HOL, HOL 4, HOL Light, Mizar anq.de

d with many existing provers (proof assistants such as Coq, PVS,
Ireq such as Simplify, Alt-Ergo, Yices, 73, CVC3, etc.).

Documentation

User manual, in PostScript and HTML.

Introduction to the Why tool given at the TYPES Summer School 2007 : slides ; lecture notes ; exercises.
Examples of programs certified with Why are collected on this page.

Why is presented in this article. Theoretical foundations are described in this paper.

Download

Why is freely available, under the terms of the GNU LIBRARY GENERAL PUBLIC LICENSE (with a special exception for
linking; see the LICENSE file included in the source distribution). It is available as:

« Source: why-2.21.tar.gz (contains Caduceus, Krakatoa and the Frama-C plugin)
+ Windows: Why Installer 2.13

Here are the recent changes.
You download previous versions from the FTP zone.
Requirements:
+ to compile the sources, you need Objective Caml 3.09 (or higher)
« £o compile the graphical user interface gwhy (optional but highly recommanded) you also need the Lablgtk2
library (Note that there is a Debian package, liblablgtk2-ocaml-dev).
+ no prover is distributed with Why, you must install at least one supported prover from the list below
« if you are willing to use Coq as a back-end prover, you need at least Coq version 7.4

There is an Eclipse plugin for Why/Caduceus/Krakatoa.

To download/install theorem provers, look at the Prover Tips page



Motivating Example

dereferenceable

1. /*@ requires Wvalid_range(t,0,n-1) .
, @ ensures behavioral correctness
3 @ (0 <= Wresult < n => t[Wresult] == v) &&
a, @ (MWresult == n => Wforall inti; 0 <=1 < n => t[i] I= V)
5, @*/
6. int index(int t[], int n, int v) { ) termination
7. inti=0;
8 /*@ invariant 0 <= | && Wforall intk; 0 <=k < i =>tlk] !=v
9, @ variant n -1 */
10. while (i < n) {
11. if (t[i] == v) break;
12, I+ +:
13, }
14, return i;
15}
2/10 Moonzoo Kim KAIST

Provable SW Lab



Snapshot of GUI of WHY

-2 gWhy : Easy proof with easy tool facg -0 x|

File Configuration Proof

Alt-Ergo Simplify| Simplify Z3 | Yices | ndex_impl_po 1
Proof aobligations funinstalled) | 1.54 154 21 1024 .
(Graph) (55) (55) t: global pointer
n: int
C function index alloc: alloc_table
Correctness H1: walid range(alloc, t, @, n - 1)
1.initialization of loop invariant = = (=) o f =)
0 == 0

2. initialization of loop invariant = = (=5 o J, =)

3. pointer dereferencing = (= = o [, =)

4. postcondition = = (= o =

5. postcondition = |._.|"-_-'I l._.|"-_-|I 0 l.-.||"_"I ________________

: : : (k] = [k ”.-"*@ requires “wwalid range(t,0,n-1)
6. preservation of loop invariant = = = _
. . = — — o -_— @ ensures
i [ ; [ [ [ @ (0 == tresult = n == t[hresult] = v &&
7. preservation of loop invariant =" = =
P : = - @ @ (\result = n == \forall int i; 0 <= i < n == t[i] != V)

8. variant decrease — = = 0 =)

9. variant decrease — (= (=2 0 (=)

10. postcondition — (= = 0 (=)

11. postcondition — (= (=2 0 (=)

(<] il | B

TimE::ut[lD |“

;] [] Pretty Printer| file: ex1.c Correctness of C function index




¢—|'

Programming by Co

e Contract:

— Write a program P which computes a number y whose
square is less than the input x

— If the input x is a positive number, compute a number
whose square is less than x

 Hoare Triples

Pre-condition Post-condition

I &

— (loN)PCIw])

— Program P is run in a state that satisfies ¢, then the sate
after it executes will satisfy y

— ([x>0]) P(lyey<x])

Slides from CS453 Fall 2005 taught by ProtKey-Sun Choi



Program Verification through
Programming by Contract/Theorem Proving

 The earliest scientific approach to verify a target s
oftware

e Requires human expertise on the target software

— If a user can specify important characteristic of the targ
et SW in a “good” way, proof can succeed.

* Ex. Loop invariant

— Note that computer scientists in early days were mathe
maticians and logicians

e Not automatic, but the verification result is
general (i.e. not bounded within n <= 10)

KAIST



Proof rules for partial correctness of
Hoare triples

A TAD

Composition
(M‘)Cl; Czqw‘)

q [E/x]\) qw‘)Assignment
(4 ~Bl)C () ~—BJIC, (v]) .
(4| )if B{C Jelse{C, Xw|)

(1 ~ Bl
(w| whileB{C}y A —B]

— b > vl my 2w
Q¢\)Cla/w\) . Wlmplled

- statement

)Partlal -while




Assi

'

ocnment
blllll 114G

o WE/X] ([W[E/X]DX =E(¥)

— Denotes the formula obtained by taking v and
replacing all free occurrences of x with E

— wwith E in place of x - whatever y says about x
but applied to £ - must be true in the initial state

* Backward verification for (| YE/x]|) x=E (| w|)
— If we know and wish to find ¢ such that
(141) x=E (] 1)




Exam Ipq

e |f P:x=2, then are the followings true?
a) (|2=2])P(|x=2])

b) (12=4])P(|x=4])

v (L) x=E (| @l)

c) (I2=y[)P(|x=y])

d) (]12>0[)P(|x>0])

e P:x=x+1
a) ([x+1=2])P(|x=2])
b) (/x+1=y]|)P(|x=y])
c) (/x+1+5=y|)P(|x+5=y|)
d) (/x+1>0Avy>0 |)P(] x>0 Ay>0 |)



f-statements |(#2BF() (9—B)C.(v)

(2))f B{C }else{C,} ()

(1¢]) if B{Cy} else {GH/wl)

— Decompose it into two triples, subgoals
corresponding to the cases of B = true and false



While-statements (v ~B|)C(¥)
(¥)while B{C}(w ~—B))

* [nvariant

e No matter how many times the body Cis
executed, if wis true initially and the while-
statement terminates, then y will be true at
the end.

e Since the while-statement has terminated, B
will be false.




Implied ey e N (17 o (7 S Al A
~ AR "1 =\

(#)e ()

* Asequent |-,z ¢ — ¢ is valid iff there is a

proof of ¢ in the natural deduction calculus

for predicate logic, where ¢ and standard laws
of arithmetic are premises.

Precondition — strengthened

— In general, we want weakest pre-condition to
make a proof as general as possible

Postcondition — weakened

— In general, we want strongest post-condition to
make a proof as general as possible

11



Partial-correctness proof for Facl in tree form
* (| T[)Facl(]y=x!])

(y-@+)=@+D) =2+ -z= z'D
(y=2rz=xp=2+1y -z=2]) (]y z=2)y=y*z(y= z'D

@=1y=1y= ]D (y=1A0=0)=0(y =1rz= OD (Y=2rz=x)=2+Ly=y*z(y=2)
(My =1y =1) (y=1)=0(y=1rz=0)) . (y = Z|while(z!= x){z=z+Ly =y *z}y = Z!Az = X))
(My =Lz=0(y =1rz=0)) (y =1rz=0)while(z!= x){z=z+1Ly =y *z}(y = X))

(]TDy =1z=0;while(Z=x){z=z+Ly=y* z}(]y = x!D

Program Facl:
y=1;
z=0;
while (z = x) {
z=z+1;

y=y*z

12



Proof Strategies

* How should the intermediate formulas ¢ be found?
— Backward works for assignment rule
— Weakest precondition of C,,, given the postcondition ¢,,,

* Proof is constructed bottom-up
— Justification makes sense when read top-down
— The weakest precondition ¢ is then checked to see

whether it follows from the given precondition ¢.

— We appeal to the Implied rule.

* An interface between predicate logic with arithmetic and program
logic



e

Examples 4.13.]

| -parl 1 Y=51) x=y+1 (| x=6])
(ly=51)

(|y+1=6|) Implied
x=y+1

(|x=6]) Assignment

* Proof is constructed from the Bottom upwards.

verification



Example 4.13.3
e Goalis to show that u (|T])
stores the sum of x and (| x+y=x+y|) Imlied

y after the following
sequence of
assignments terminates.

Z=X;

(|z+y=x+y|) Assignment

7= x: Z = z+y;
2=7+y; (|z =x+y|) Assignment
u=z; u=z

* Proof backwards (|u=x+y|) Assignment




a=x+1; $,is 1 =x+1
if (a-1==0){ 0, is a =x+1
y=1
else (4C(v) (2Ca
y =a; (B > ¢) A(=B — 4,|)if B{C }else{C,}(¥)
}

(~B)C.(v]) (4~—B)C.(v1)
(4)if B{C }else{C,} (¥




Partial-While (7 ~B[)C ()

e nisinvariant. () white B{C} (7 A—})

* (I9]) while (B) {C} (| w])

— ¢ and y are not related.
— How to relate? -- Discover a suitable 1, such that
*l-0—m
*|-nA-B—ovy
* (I nl) while (B) {C} (| n A—B [) hold.
— “Implied-rule” discovery
e Dijkstra




Binary Se

// Note that requires/ensures can access
only function parameters and return
value

/*@ requires

@ n >=0 && \valid_range(t,0,n-1) &&
@ \forall int k1, int k2;

@ 0 <= k1 <= k2 <= n-1 => t[k1] <= t[k2]
@ ensures

@ (\result >= 0 && t[\result] ==v) | |

@ (\result == -1 &&

@ \forallintk; 0<=k<n=>t[k] !=V)
@*/

18

arch Exambp

s 8 ' | 8 8

)

int binary_search(int* t, int n, int v) {
intl=0,u=n-1,p=-1;
/*@ invariant
@0<=1&& u<=n-1&&p==-18&&
@ \forall int k;
@0<=k<n=>t[k]==v=>I<=k<=u
@ variant u-l
@*/
while (I <=u) {
intm={(1+u)/2;
//@ assert | <=m<=u
if (t[m] <v)
[=m+1;
else if (t[m] > v)
u=m-1;
else {
p = m; break;
}
}

return p;



Snapshot of WHY Result

gWhy : Easy proof with easy tool (- [=] ] 3

File Configuration Proof

. . . . . L LN It " - R Y | '\!HLJ.U_IHIIUELELLULJ L, o, = L7y diu a
o Nt—Ergo Simplify  Simplify 23 | Yices (forall kl:int. |
Proof obligations (uninstalled) 1.5.4 154 21 1024 i 11 k2:int
(Graph) (S5 (SS) ora Ant
— (0 == k1 and kl == k2) and kZ == n - 1 -=>
C function binary_search X X acc{intM_global, shifti(t, kl}) <= acc(intM_global, shift(t,
Correctness k211)))
1. initialization of loop invariant = 0 : 0 :_', L: 1”E Il
— o p: in
2. initialization of loop invariant == o =] o e | u: int
o o = — | H4 (((e == 1 and u == n - 1) and p = -1) and
3. initialization of loop invariant == 0 (=] 0 (=] {(forall k:int.
= () B <=k and k = n -=>
4 check division by zero - @ =2 @ 08 ace(intM_ylobal, shifl(L, kK)) = v -> 1 == k and k <= u)) =
5. assertion = @ — % — Hie: L= u
6. assertion == '@ = S;% =
— J— »>= 0 and acc(intM global, shift(t, = v or
7. pointer dereferencing == @ 2 @ & (E - -1 and ( -9 (t.ph)
) S = =) {(forall k:int. 0 == k and k = n -> acc(intM_global, shift(t, k)
8. tion of | t = = =) _ ) ) |
preservation of loop invarian 0 .:. 0 .:. < v)) =
9. preservation of loop invariant == @ 2 @ & /*@ requires A
10. preservation of loop invariant = o (=} 0 =} @n >= 0 &&
— —.|@ wwvalid_range(t,0,n-1) &&
11. preservation of loop invariant = o [ o e | @ ©forall int k1, int k2;
— — D == kl == k2 == n-1 == t[kl = t[k2
12. preservation of loop invariant = o (=} 0 =} g en:ures = = > tlkll < 2]
o — _ o ‘I__—Il 0 D -
14, variant decrease = o .:. o .:.
| k] @*’
15. pointer dereferencing — 0 = 0 e |lint binary_search{int* t, int n, int w) {
16. preservation of loop invariant = o .:. o .:. it 1=0, u=n-l p-=-L =
17. preservation of loop invariant = (=] (=) ) .
0 \-_"' 0 :" /*@ invariant
18. preservation of loop invariant = o = o = @0 <=16&&uU <=n-1 && p == -1 &&
) o = = @ \forall int k;
19. preservation of loop invariant == o (=1 0 = @0 <=k «n => t[k] == v == 1 == k == u
20. preservation of loop invariant = o .:. o .:. g*:arlan‘t u-1
21 variant decrease = (=) (= while (1 <=u ) {
@ \-_"' 0:" intm= (1 +u) / 2;
22.variant decrease == (e 2 & 2 //@ assert 1 == m <= u
_ — if (tlm] = v) —
23. postcondition = o |'__', o ll_..ll TL=m+ 1;
4. postcandition e = e .= else if (tim] = v}
u=m-1;
else { -
@ | B p = m break; N

111
Timeout [ Pretty Printer| file: bi-search.c VC: postcondition




