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Overview of the Spin ArchitectureOverview of the Spin Architecture

System Spec.
In Promela Spin 

Model pan.c C compiler a.out

Req. Spec.
In LTL

Model 
Checker

p p

OKCounter

A few characteristics of Spin

OKCounter 
Example (s)

Promela allows a finite state model only
Asynchronous execution
Interleaving semantics for concurrencyInterleaving semantics for concurrency
2-way process communication
Non-determinism
Promela provides (comparatively) rich set of constructs such as 
variables  and message passing, dynamic creation of processes, 
etc
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Overview of the PromelaOverview of the Promela
Similar to C syntax but

byte x;
chan ch1= [3] of {byte};

Similar to C syntax but 
simplified

No pointer

Global variables
(including channels)

active[2] proctype A() {
byte z;
printf(“x=%d\n”,x);

p
No real datatype such 
as float or real
No functions

Process (thread) 
definition and 

creationp ( )
z=x+1;
ch1!z

}

No functions
Processes are 
communicating with 

creation

proctype B(byte y) {
byte z;
h1?

each other using
Global variables
Message channels

Another 
process

ch1?z;
}

Init {

Message channels
Process can be 
dynamically created

definition

SystemInit {
run B(2);

}
Scheduler executes 
one process at a time 
using interleaving

System 
initialization
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Process Creation ExampleProcess Creation Example

run() operator creates a 
process and returns a 

active[2] proctype A() {
byte x;

newly created process 
ID
There are 6 possible

printf(“A%d is starting\n”);
}

There are 6 possible 
outcomes due to non-
deterministic scheduling  proctype B() {

i tf(“B i t ti \ ”)
g

A0.A1.B, A0.B.A1
A1.A0.B, A1.B.A0

printf(“B is starting\n”);
}

B.A0.A1, B.A1.A0
In other words, process 
creation may not

Init {
run B(); creation may not

immediately start 
process execution

run B();
}

p
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Variables and TypesVariables and Types

Basic types
bit
bool
Byte (8 bit unsigned integer)
short (16 bits signed integer)short (16 bits signed integer)
Int (32 bits signed integer)

Arraysy
bool x[10];

Records
t d f R { bit b t }typedef R { bit x; byte y;}

Default initial value of variables is 0
Most arithmetic (e g + ) relational (e g > ==) andMost arithmetic (e.g.,+,-), relational (e.g. >,==) and 
logical operators of C are supported 

bitshift operators are supported too.
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Finite  State ModelFinite  State Model

Promela spec generates only a finite state 
model becausemodel because

Max # of active process <= 255
Each process has only finite length of codes
Each variable is of finite datatypeEach variable is of finite datatype
All message channels have bounded 
capability <= 255capability <= 255
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Basic StatementsBasic Statements

Each Promela statement is either
executable: 
Bl k dBlocked

There are six types of statement
Assignment:  always executableg y

• Ex. x=3+x, x=run A()
Print: always executable

• Ex. printf(“Process %d is created.\n”, pid);p ( ,_p )
Assertion: always executable

• Ex. assert( x + y == z)
Expression: depends on its valuep p

• Ex. x+3>0, 0, 1, 2
• Ex. skip, true

Send: depends on buffer statusp
• Ex. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
• Ex. ch1?m is executable only if ch1 is not emptyy p y

7



Expression StatementsExpression Statements

An expression is also a statement
It is executable if it evaluates to non zeroIt is executable if it evaluates to non-zero
1 : always executable
1 2 l t bl1<2:always executable
x<0: executable only when x < 0
x-1:executable only when x !=0

If an expression statement in blocked, it p ,
remains blocked until other process 
changes the conditiong

an expression e is equivalent to while(!e); in C
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assert Statementassert Statement

assert(expr)
assert is always executable
If expr is 0 SPIN detects this violationIf expr is 0, SPIN detects this violation
assert is most frequently used checking 
method, especially as a form of 
invariance
• ex.  active proctype inv() { assert( x== 0);}

– Note that inv() is equivalent to [] (x==0) in LTLNote that inv() is equivalent to [] (x 0) in LTL 
with thanks to interleaving semantics
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Program Execution ControlProgram Execution Control

Promela provides low-level control mechanism, i.e., goto 
and label as well as if and do
N t th t d t i i ti l ti i t dNote that non-deterministic selection is supported
else is predefined variable which becomes true if all 
guards are false; false otherwiseg ;

proctype A() { proctype A() { proctype A() {proctype A() {
byte x;
starting: 
x= x+1;

proctype A() {
byte x;
if
:: x <= 0 -> x=x+1

byte x;
do
:: x <= 0 -> x=x+1; x= x+1;

goto starting;
}

:: x <= 0 -> x=x+1
:: x == 0 -> x=1
fi

}

;
:: x == 0 -> x=1;
:: else -> break
od} od 

}
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6 Types of Basic Statements6 Types of Basic Statements

Assignment:  always executable
Ex. x=3+x, x=run A()

Print: always executable
Ex. printf(“Process %d is created.\n”,_pid);

Assertion: always executable
Ex. assert( x + y == z)

E i d d it lExpression: depends on its value
Ex. x+3>0, 0, 1, 2
Ex skip trueEx. skip, true

Send: depends on buffer status
Ex ch1!m is executable only if ch1 is not fullEx. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
Ex. ch1?m is executable only if ch1 is not emptyy p y
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Critical Section ExampleCritical Section Example
[root@moonzoo spin test]# ls[root@moonzoo spin_test]# ls
crit.pml
[root@moonzoo spin_test]# spin -a crit.pml 
[root@moonzoo spin_test]# ls

i l b h

bool lock;
byte cnt;

crit.pml  pan.b  pan.c  pan.h  pan.m  pan.t
[root@moonzoo spin_test]# gcc pan.c
[root@moonzoo spin_test]# a.out
pan: assertion violated (cnt<=1) (at depth 8)

active[2] proctype P() {
!lock -> lock=true;

t t 1

pan: assertion violated (cnt< 1) (at depth 8)
pan: wrote crit.pml.trail
Full statespace search for:

never claim             - (none specified)
ti i l ticnt=cnt+1;

printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock false;

assertion violations    +
acceptance   cycles     - (not selected)
invalid end states      +

State-vector 36 byte, depth reached 16, errors: 1lock=false;
}

active proctype Invariant() {

State vector 36 byte, depth reached 16, errors: 1
119 states, stored
47 states, matched

166 transitions (= stored+matched)
0 t i tactive proctype Invariant() {

assert(cnt <= 1);
}

0 atomic steps
hash conflicts: 0 (resolved)
4.879   memory usage (Mbyte)
[root@moonzoo spin test]# ls
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[root@moonzoo spin_test]# ls
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Critical Section Example (cont.)Critical Section Example (cont.)
[root@moonzoo spin_test]# spin -t -p crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2

1: proc 1 (P) line 5 "crit pml" (state 1) [(!(lock))]1:    proc  1 (P) line   5 crit.pml  (state 1)       [(!(lock))]
2:    proc  0 (P) line   5 "crit.pml" (state 1)       [(!(lock))]
3:    proc  1 (P) line   5 "crit.pml" (state 2)       [lock = 1]
4:    proc  1 (P) line   6 "crit.pml" (state 3)       [cnt = (cnt+1)]

1 i i h !1 is in the crt sec!
5:    proc  1 (P) line   7 "crit.pml" (state 4)       [printf('%d is in the crt sec!\\n',_pid)]
6:    proc  0 (P) line   5 "crit.pml" (state 2)       [lock = 1]
7: proc 0 (P) line 6 "crit.pml" (state 3) [cnt = (cnt+1)]7:    proc  0 (P) line   6 crit.pml  (state 3)       [cnt  (cnt 1)]

0 is in the crt sec!
8:    proc  0 (P) line   7 "crit.pml" (state 4)       [printf('%d is in the crt sec!\\n',_pid)]

spin: line  13 "crit.pml", Error: assertion violated
i t t f f il d ti t(( t 1))spin: text of failed assertion: assert((cnt<=1))

9:    proc  2 (Invariant) line  13 "crit.pml" (state 1)       [assert((cnt<=1))]
spin: trail ends after 9 steps
#processes: 3#processes: 3

lock = 1
cnt = 2

9:    proc  2 (Invariant) line  14 "crit.pml" (state 2) <valid end state>
9 1 (P) li 8 " it l" ( t t 5)
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9:    proc  1 (P) line   8 "crit.pml" (state 5)
9:    proc  0 (P) line   8 "crit.pml" (state 5)

3 processes created



Revised Critical Section ExampleRevised Critical Section Example

bool lock;
byte cnt; [root@moonzoo revised]# a.out

F ll t t h f

active[2] proctype P() {
atomic{ !lock -> lock=true;}

Full statespace search for:
never claim             - (none specified)
assertion violations    +
acceptance cycles (not selected){ ;}

cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;

acceptance   cycles     - (not selected)
invalid end states      +

State vector 36 byte depth reached 14 errors: 0cnt cnt 1;
lock=false;

}

State-vector 36 byte, depth reached 14, errors: 0
62 states, stored
17 states, matched
79 transitions (= stored+matched)

active proctype Invariant() {
assert(cnt <= 1);

}

79 transitions (  stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

} 4.879   memory usage (Mbyte)
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Deadlocked Critical Section ExampleDeadlocked Critical Section Example
[[root@moonzoo deadlocked]# a out

bool lock;
byte cnt;

[[root@moonzoo deadlocked]# a.out
pan: invalid end state (at depth 3)

(Spin Version 4.2.7 -- 23 June 2006)byte cnt;

active[2] proctype P() {
atomic{ !lock > lock==true;}

(Sp e s o 3 Ju e 006)
Warning: Search not completed

+ Partial Order Reduction

atomic{ !lock -> lock==true;}
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);

t t 1

Full statespace search for:
never claim             - (none specified)
assertion violations    +

cnt=cnt-1;
lock=false;

}

acceptance   cycles     - (not selected)
invalid end states      +

active proctype Invariant() {
assert(cnt <= 1);

State-vector 36 byte, depth reached 4, errors: 1
5 states, stored
0 states, matched
5 t iti ( t d t h d)

( );
} 5 transitions (= stored+matched)

2 atomic steps
hash conflicts: 0 (resolved)
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Deadlocked Critical Section Example (cont.)Deadlocked Critical Section Example (cont.)

[root@moonzoo deadlocked]# spin -t -p deadlocked_crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2
1:    proc  2 (Invariant) line  13 "deadlocked crit.pml" (state 1)    p ( ) _ p ( )

[assert((cnt<=1))]
2: proc 2 terminates
3: proc 1 (P) line 5 "deadlocked crit pml" (state 1) [(!(lock))]3:    proc  1 (P) line   5 deadlocked_crit.pml  (state 1)    [(!(lock))]
4:    proc  0 (P) line   5 "deadlocked_crit.pml" (state 1)    [(!(lock))]

spin: trail ends after 4 steps
#processes: 2#processes: 2

lock = 0
cnt = 0

4 1 (P) li 5 "d dl k d it l" ( t t 2)4:    proc  1 (P) line   5 "deadlocked_crit.pml" (state 2)
4:    proc  0 (P) line   5 "deadlocked_crit.pml" (state 2)

3 processes created
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Options in XSPINOptions in XSPIN

N h l d ll t h i tNow you have learned all necessary techniques to 
verify common problems in the SW development
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Communication Using Message ChannelsCommunication Using Message Channels

Spin provides communications through 
various types of message channels yp g

Buffered or non-buffered (rendezvous comm.)
Various message typesVarious message types
Various message handling operators

Syntax
chan ch1 = [2] of { bit byte};chan ch1  [2] of { bit, byte};

• ch1!0,10;ch1!1,20
• ch1?b bt;ch1?1 bt Sender     (1,20)  (0,10)    Receiver• ch1?b,bt;ch1?1,bt

chan ch2= [0] of {bit, byte}
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Operations on ChannelsOperations on Channels

Basic channel inquiry
len(ch)
empty(ch)
full(ch)
nempty(ch)nempty(ch)
nfull(ch)

Additional message passing operatorsg g
ch?[x,y]: polling only
ch?<x,y>: copy a message without removing it
ch!!x y: sorted sending (increasing order)ch!!x,y: sorted sending (increasing order)
ch??5,y: random receiving
ch?x(y) == ch?x,y (for user’s understandability)

Be careful to use these operators inside of expressions 
They have side-effects, which spin may not allow
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Faulty Data Transfer Protocol Faulty Data Transfer Protocol 
(pg 27, data switch model proposed at 1981 at Bell labs)(pg 27, data switch model proposed at 1981 at Bell labs)

mtype={ini ack dreq data shutup quiet dead}mtype={ini,ack, dreq,data, shutup,quiet, dead}
chan M = [1] of {mtype};
chan W = [1] of {mtype}; active proctype Wproc() {

W?ini; /* wait for ini*/
active proctype Mproc() 
{

W!ini; /* connection */
M?ack; /* handshake */

W?ini; /  wait for ini /
M!ack; /* acknowledge */

do /* 3 options: */
M?ack; /  handshake /

timeout ->   /* wait */
if /* two options: */

:: W?dreq-> /* data requested */
M!data /* send data */

:: W?data-> /* receive data   */
skip /* no response */

:: W!shutup; /* start shutdown */
:: W!dreq; /* or request data */

do
:: M?data > W!data

skip /  no response /
:: W?shutup->

M!shutup; /* start shutdown*/
break

:: M?data -> W!data
:: M?data-> W!shutup; 

break
od

od;

W?quiet;
M!dead;

fi;
M?shutup;
W!quiet;
M?dead;

M!dead;
}

M W

Channel W

20

M?dead;
}

Mproc Wproc
Channel M



The Sieve of Eratosthenes (pg 326)The Sieve of Eratosthenes (pg 326)
/* proctype sieve(chan c; int prime)/

The Sieve of Eratosthenes (c. 276-196 BC)
Prints all prime numbers up to MAX

*/

p yp ( ; p )
{       chan child = [0] of { mtype, int };

bool haschild;  int n;
printf("MSC: %d is prime\n", prime);

end: do#define MAX     25
mtype = { number, eof };
chan root = [0] of { mtype, int };

end: do
:: c?number(n) ->

if
:: (n%prime) == 0 ->  printf("MSC: %d 

init
{       int n = 2;

( p ) p (
= %d*%d\n", n, prime, n/prime)

:: else ->
if
:: !haschild > /* new prime */run sieve(root, n);

do
:: (n <  MAX) -> n++; root!number(n)
:: (n >= MAX) -> root!eof(0); break

:: !haschild -> /* new prime */
haschild = true;
run sieve(child, n);

:: else ->:: (n >  MAX) > root!eof(0); break
od

}
child!number(n)

fi;
fi

:: c?eof(0) > break:: c?eof(0) -> break
od;
if
:: haschild ->  child!eof(0)
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( )
:: else
fi

}


