Part |

The Spin Model Checker :

Moonzoo Kim

Overview of the SEin Architecture

System Spec.
In Promela

Spin

Model pan.c a.out
Req. Spec. Checker /\
In LTL
Counter OK
Example (s)

B A few characteristics of Spin

+ Promela allows a finite state model only

+ Asynchronous execution

+ Interleaving semantics for concurrency
+ 2-way process communication
+ Non-determinism

+ Promela provides (comparatively) rich set of constructs such as
variables and message passing, dynamic creation of processes,
etc

KAIST

L. ;

byte Xx;
chan chl= [3] of {byte};

active[2] proctype A() {
byte z;
printf(“x=%d\n",x);
Z=X+1;
chl!z

}

proctype B(byte y) {
byte z;
chl?z;

}

Init {
run B(2);
}

KAIST

.y

Global variables
(including channels)

Process (thread)
definition and
creation

Another
process
definition

System
initialization

Overview of the Promela

E Similar to C syntax but

simplified
+ NO pointer

+ No real datatype such
as float or real

+ No functions

Processes are
communicating with
each other using

+ Global variables

NMaocecanoa rhannale
IVIL;QQUU\.JL, il 1miivio

Process can be
dynamically created

Scheduler executes
one process at a time
using interleaving
semantics

Process Creation ExamEIe

active[2] proctype A() {
byte X;
printf(“A%d is starting\n”);
}

proctype B() {
printf(“B is starting\n”);

}

Init {
run B();
}

KAIST

.y

B There are 6 possible

B run() operator creates a

process and returns a
newly created process
ID

outcomes due to non-
deterministic scheduling
+ A0.A1.B, A0.B.A1
+ A1.A0.B, A1.B.AO
+ B.A0.A1, B.A1.A0

In other words, process
creation may not
Immediately start
process execution

Variables and TzEes

B Basic types
+ Dbit
+ bool
+ Byte (8 bit unsigned integer)
+ short (16 bits signed integer)
+ Int (32 bits signed integer)
E Arrays
+ bool x[10];
B Records
+ typedef R { bit x; byte y;}
B Default initial value of variables is 0
B Most arithmetic (e.g.,+,-), relational (e.g. >,==) and
logical operators of C are supported
+ bitshift operators are supported too.

KAIST

i :

Finite State Model

B Promela spec generates only a finite state
model because
+ Max # of active process <= 255
+ Each process has only finite length of codes
+ Each variable is of finite datatype
+ All message channels have bounded

capability <= 255

KAIST

i :

Basic Statements

B Each Promela statement is either
+ executable:
+ Blocked

E There are six types of statement
+ Assignment: always executable
o EXx. X=3+X, Xx=run AQ
+ Print: always executable
o Ex. printf(““Process %d i1s created.\n”, pid);
+ Assertion: always executable
e Ex.assert(X + y == 2)
+ Expression: depends on its value
e Ex. x+3>0,0,1, 2
 Ex. skip, true
+ Send: depends on buffer status
 Ex. chl!mis executable only if chl is not full
+ Receive: depends on buffer status
 Ex. chl?mis executable only if chl is not empty

KAIST

Ln 7

ExEression Statements

B An expression Is also a statement
+ |t IS executable If it evaluates to non-zero
+1 . always executable
+1<2:always executable
+X<0: executable only when x <0
+ X-1:executable only when x =0
B If an expression statement in blocked, it

remains blocked until other process
changes the condition

+an expression e is equivalent to while(le); in C

KAIST
L®

assert Statement

B assert(expr)

+assert Is always executable
+|f expr i1s 0, SPIN detects this violation

+assert Is most frequently used checking
method, especially as a form of
Invariance
e eX. active proctype inv() { assert(x==0);}

— Note that inv() is equivalent to [] (x==0) in LTL
with thanks to interleaving semantics

KAIST
L

Program Execution Control

E Promela provides low-level control mechanism, I.e., goto
and label as well as if and do

B Note that non-deterministic selection is supported

B else Is predefined variable which becomes true if all
guards are false; false otherwise

proctype A() { proctype A() { proctype A() {

byte Xx; byte X; byte Xx;
starting: if do
X= X+1; X <=0 -> x=x+1 X <=0 -> X=X+
goto starting; o x==0->x=1 X ==0->x=1;

) fi :: else -> break

} od
}
KAIST

Ln T

6 TzEes of Basic Statements

B Assignment: always executable
+ Ex. X=3+X, X=run A(Q)
B Print: always executable
+ EX. printf(““Process %d 1s created.\n”, pid);
B Assertion: always executable
+ Ex.assert(X + y == 2)
B Expression: depends on its value
+ ExX. x+3>0,0, 1, 2
+ Ex. skip, true
B Send: depends on buffer status
*+ Ex. chl!m is executable only if chl is not full

B Recelve: depends on buffer status
*+ EX. ch1l?”m is executable only if chl is not empty
KAIST

liq 11

Critical Section ExamEIe

[root@moonzoo spin_test]# Is

crit.pml

[root@moonzoo spin_test]# spin -a crit.pml
[root@moonzoo spin_test]# Is

crit.pml pan.b pan.c pan.h pan.m pan.t
[root@moonzoo spin_test]# gcc pan.c

bool lock; .
byte cnt: [root@moon_zoo s_pln_test]# a.out
’ pan: assertion violated (cnt<=1) (at depth 8)
_ pan: wrote crit.pml.trail
active[2] proctype P() { Full statespace search for:
llock -> lock=true; never claim - (none specified)
cnt=cnt+1; assertion violations +
printf("%d is in the crt sec\n",_pid); =~ acceptance cycles - (not selected)
cnt=cnt-1: invalid end states +
lock=false: State-vector 36 byte, depth reached 16, errors: 1
’ 119 states, stored
} 47 states, matched
_ _ 166 transitions (= stored+matched)
active proctype Invariant() { 0 atomic steps
assert(cnt <= 1); hash conflicts: 0 (resolved)
} 4.879 memory usage (Mbyte)
[root@moonzoo spin_test]# Is
KAIST a.out crit.pml crit.pml.trail pan.b pan.c pan.h

7 pan.m pan.t
En -

Critical Section ExamEIe gcont.z

[root@moonzoo spin_test]# spin -t -p crit.pml

Starting P with pid O
Starting P with pid 1
Starting Invariant with pid 2

1: proc 1 (P)line 5 "crit.pml" (state 1) [('(lock))]

2. proc O (P)line 5 "crit.pml" (state 1) [('(lock))]

3: proc 1 (P)line 5 "crit.pml" (state 2) [lock = 1]

4: proc 1 (P)line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

1 is in the crt sec!

5. proc 1(P)line 7 "crit.pml" (state 4) [printf("%d is in the crt sec\\n', pid)]
6: proc O (P)line 5 "crit.pml" (state 2) [lock = 1]

7. proc O (P)line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

O is in the crt sec!

8: proc O (P)line 7 "crit.pml" (state 4) [printf("%d is in the crt sec\\n', pid)]
spin: line 13 "crit.pml", Error: assertion violated
spin: text of failed assertion: assert((cnt<=1))

9: proc 2 (Invariant) line 13 "crit.pml" (state 1)
spin: trail ends after 9 steps
#processes: 3

lock =1
cnt=2
9: proc 2 (Invariant) line 14 "crit.pml" (state 2) <valid end state>
9. proc 1(P)line 8"crit.pml" (state 5)
KAISToroc 0 (P) line 8 “crit.pml" (state 5)

_
3 proce r E

[assert((cnt<=1))]

Revised Critical Section ExamEIe

bool lock;
byte cnt; [root@moonzoo revised]# a.out
Full statespace search for:
never claim - (none specified)

active[2] proctype P() {

: assertion violations +
atomic{ 'lock -> lock=true;}

acceptance cycles - (not selected)

cnt=cnt+1; _invalid end states ~ +
printf("%d is in the crt sec\n", pid);
cnt=cnt-1, State-vector 36 byte, depth reached 14, errors: O
lock=false; 62 states, stored
} 17 states, matched
79 transitions (= stored+matched)
active proctype Invariant() { 0 atomic steps

assert(cnt <= 1); hash conflicts: O (resolved)

} 4.879 memory usage (Mbyte)

KAIST

lﬂ 14

Deadlocked Critical Section ExamEIe

[[root@moonzoo demd!ocked]# a.out
pan: invalid end state (at depth 3)

bool lock;

byte cnt; (Spin Version 4.2.7 -- 23 June 2006)
Warning: Search not completed

active[2] proctype P() { + Partial Order Reduction

] S __ :
atomic{ !lock -> lock==true;} Full statespace search for:

Cn_t=CTt+1;_ _ never claim - (none specified)
printf("%d is in the crt sec\n",_pid); 5ssertion violations -+
cnt=cnt-1,; acceptance cycles - (not selected)
lock=false; invalid end states +

}

State-vector 36 byte, depth reached 4, errors: 1

active proctype Invariant() { 5 states, stored
assert(cnt <= 1); 0 states, matched

1 5 transitions (= stored+matched)
2 atomic steps
hash conflicts: O (resolved)

KAIST 4.879 memory usage (Mbyte)

Ln E

Deadlocked Critical Section ExamEIe gcont.z

[root@moonzoo deadlocked]# spin -t -p deadlocked_crit.pml
Starting P with pid O
Starting P with pid 1
Starting Invariant with pid 2
1: proc 2 (Invariant) line 13 "deadlocked crit.pml" (state 1)
[assert((cnt<=1))]
2. proc 2 terminates
3: proc 1(P)line 5 "deadlocked crit.oml" (state 1) [(!(lock))]
4: proc O (P)line 5 "deadlocked crit.pml" (state 1) [(!(lock))]
spin: trail ends after 4 steps
#processes: 2
lock =0
cnt=0
4: proc 1 (P)line 5 "deadlocked crit.pml" (state 2)
4: proc O (P)line 5 "deadlocked crit.pml" (state 2)
3 processes created

KAIST

BN -

OEtions In XSPIN

B Now you have learned all necessary techniques to
verify common problems in the SW development

O Advanced Verification Options —Ox Basic Verification Options

Physical Memory Availahle {in Mbytes): 4000 explain search kode
Correctness Properies

- . . Exhaustive
Estimated State Space Size (states = 10°3): |500 explain & Safety (state properties) ¢ Suportrace/Bitstate
Mazimum Search Depth (steps): 10000 explain W Assertions Hash-Compact
Hr of hash-functions in Bitstate mode: 2 explain M Invalid Endstates

Liveness (cycles/sequences) A Full Gueue
Extra Compile-Time Directives {Optional): Choose Hon-Progress Cycles 4 Blocks Hew Msgs
Extra Run-Time Options (Optional): Choose Acceptance Cycles Loses Hew Msqgs

Extra Verifier Generation Options: Choose SR EHEELS [TR [Add Hever Claim from File]

Apply Never Claim (If Present) [Verify an LTL Property]

— Type of Run M Report Unreachable Code
4 Stop at Error MNr: |1 ¥ Use Partial Order Reduction Check xrivs Assertions [Set Advanced Options]
Don't Stop at Errors Use Compression Help Cancel Run
Save All Error-trails Add Complexity Profiling
Find Shortest Trail (iterative) Compute Variable Ranges

Use Breadth-First Search

Help

B 17

Communication Using I\/Iessage Channels

B Spin provides communications through
various types of message channels
+ Buffered or non-buffered (rendezvous comm.)
+\Various message types
+\Various message handling operators
E Syntax
+chan chl = [2] of { bit, byte};

=1 =" L e |

 ch1!0,10;ch1!1,20
* ch1?b,bt;ch1?1,bt

+chan ch2= [0] of {bit, byte}

Sender— (1,20) (0,10) —Receiver

KAIST
L®

18

OEerations on Channels

B Basic channel inquiry
+ len(ch)
+ empty(ch)
+ full(ch)
+ nempty(ch)
+« nfull(ch)
E Additional message passing operators
+ ch?[x,y]: polling only
+ ch?<x,y>: copy a message without removing it
+ ch!!x, y: sorted sending (increasing order)
+ ch??5,y: random receiving
+ ch?x(y) == ch?x,y (for user’s understandability)

B Be careful to use these operators inside of expressions
+ They have side-effects, which spin may not allow

Ln E

KAIST

I 1 ILy |JC_1II II CI.L:
chan M =[1] of {mtype}
chan W = [1] of {mtype};

Faulty Data Transfer Protocol

. t M e W?2ini;
?c ive proctype Mproc() G Mlack:
W!ini; /* connection */] do
M?ack; /* handshake */ . W2dreg->
: : M!data
timeout -> * wait */. - W?data->
if [* two options: */ skip
. Wishutup; /* start shutdown */ . W2shutup->
. Wldreq; /* or request data */
d?ﬂ ; break
- M?data -> W!'data od:
.. M?data-> W!shutup;
break W2quiet;
; od M!dead;
1,
M?shutup; Channel W
W!quiet; IS
M?dead;
} KAIST —

.y

active proctype Wproc() {

[* wait for ini*/
[* acknowledge */

[* 3 options: */

[* data requested */
[* send data */

[* receive data */
[* no response */

M!shutup; /* start shutdown?*/

20

The Sieve of Eratosthenes

/*
The Sieve of Eratosthenes (c. 276-196 BC)
Prints all prime numbers up to MAX

*/

#define MAX 25

mtype = { number, eof };

chan root = [0] of { mtype, int };

init
{ intn =2;

run sieve(root, n);

do

.. (n < MAX) -> n++; root'number(n)
.. (n >= MAX) -> root!eof(0); break
od

l‘q—}—ﬂ

326

proctype sieve(chan c; int prime)
{ chan child = [0] of { mtype, int };
bool haschild; int n;
printf("MSC: %d is prime\n", prime);
end: do
.. ¢c?number(n) ->
if
.. (nN%prime) == 0 -> printf("MSC: %d
= %d*%d\n", n, prime, n/prime)
.. else ->
if
.. Thaschild -> /* new prime */
haschild = true;
run sieve(child, n);
.. else ->
child'number(n)
fi;
fi
.. c?eof(0) -> break
od,;
if
.. haschild -> child!eof(0)
.. else
fi

