
The Spin Model Checker : Part IThe Spin Model Checker : Part IThe Spin Model Checker : Part IThe Spin Model Checker : Part I

Moonzoo Kim
Provable SW Lab KAISTProvable SW Lab, KAIST

Overview of the Spin ArchitectureOverview of the Spin Architecture

System Spec.
In Promela Spin

Model pan.c C compiler a.out

Req. Spec.
In LTL

Model
Checker

p p

OKCounter

A few characteristics of Spin

OKCounter
Example (s)

Promela allows a finite state model only
Asynchronous execution
Interleaving semantics for concurrencyInterleaving semantics for concurrency
2-way process communication
Non-determinism
Promela provides (comparatively) rich set of constructs such as
variables and message passing, dynamic creation of processes,
etc

2

Overview of the PromelaOverview of the Promela
Similar to C syntax but

byte x;
chan ch1= [3] of {byte};

Similar to C syntax but
simplified

No pointer

Global variables
(including channels)

active[2] proctype A() {
byte z;
printf(“x=%d\n”,x);

p
No real datatype such
as float or real
No functions

Process (thread)
definition and

creationp ()
z=x+1;
ch1!z

}

No functions
Processes are
communicating with

creation

proctype B(byte y) {
byte z;
h1?

each other using
Global variables
Message channels

Another
process

ch1?z;
}

Init {

Message channels
Process can be
dynamically created

definition

SystemInit {
run B(2);

}
Scheduler executes
one process at a time
using interleaving

System
initialization

3

using interleaving
semantics

Process Creation ExampleProcess Creation Example

run() operator creates a
process and returns a

active[2] proctype A() {
byte x;

newly created process
ID
There are 6 possible

printf(“A%d is starting\n”);
}

There are 6 possible
outcomes due to non-
deterministic scheduling proctype B() {

i tf(“B i t ti \ ”)
g

A0.A1.B, A0.B.A1
A1.A0.B, A1.B.A0

printf(“B is starting\n”);
}

B.A0.A1, B.A1.A0
In other words, process
creation may not

Init {
run B(); creation may not

immediately start
process execution

run B();
}

p

4

Variables and TypesVariables and Types

Basic types
bit
bool
Byte (8 bit unsigned integer)
short (16 bits signed integer)short (16 bits signed integer)
Int (32 bits signed integer)

Arraysy
bool x[10];

Records
t d f R { bit b t }typedef R { bit x; byte y;}

Default initial value of variables is 0
Most arithmetic (e g +) relational (e g > ==) andMost arithmetic (e.g.,+,-), relational (e.g. >,==) and
logical operators of C are supported

bitshift operators are supported too.

5

Finite State ModelFinite State Model

Promela spec generates only a finite state
model becausemodel because

Max # of active process <= 255
Each process has only finite length of codes
Each variable is of finite datatypeEach variable is of finite datatype
All message channels have bounded
capability <= 255capability <= 255

6

Basic StatementsBasic Statements

Each Promela statement is either
executable:
Bl k dBlocked

There are six types of statement
Assignment: always executableg y

• Ex. x=3+x, x=run A()
Print: always executable

• Ex. printf(“Process %d is created.\n”, pid);p (,_p)
Assertion: always executable

• Ex. assert(x + y == z)
Expression: depends on its valuep p

• Ex. x+3>0, 0, 1, 2
• Ex. skip, true

Send: depends on buffer statusp
• Ex. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
• Ex. ch1?m is executable only if ch1 is not emptyy p y

7

Expression StatementsExpression Statements

An expression is also a statement
It is executable if it evaluates to non zeroIt is executable if it evaluates to non-zero
1 : always executable
1 2 l t bl1<2:always executable
x<0: executable only when x < 0
x-1:executable only when x !=0

If an expression statement in blocked, it p ,
remains blocked until other process
changes the conditiong

an expression e is equivalent to while(!e); in C

8

assert Statementassert Statement

assert(expr)
assert is always executable
If expr is 0 SPIN detects this violationIf expr is 0, SPIN detects this violation
assert is most frequently used checking
method, especially as a form of
invariance
• ex. active proctype inv() { assert(x== 0);}

– Note that inv() is equivalent to [] (x==0) in LTLNote that inv() is equivalent to [] (x 0) in LTL
with thanks to interleaving semantics

9

Program Execution ControlProgram Execution Control

Promela provides low-level control mechanism, i.e., goto
and label as well as if and do
N t th t d t i i ti l ti i t dNote that non-deterministic selection is supported
else is predefined variable which becomes true if all
guards are false; false otherwiseg ;

proctype A() { proctype A() { proctype A() {proctype A() {
byte x;
starting:
x= x+1;

proctype A() {
byte x;
if
:: x <= 0 -> x=x+1

byte x;
do
:: x <= 0 -> x=x+1; x= x+1;

goto starting;
}

:: x <= 0 -> x=x+1
:: x == 0 -> x=1
fi

}

;
:: x == 0 -> x=1;
:: else -> break
od} od

}

10

6 Types of Basic Statements6 Types of Basic Statements

Assignment: always executable
Ex. x=3+x, x=run A()

Print: always executable
Ex. printf(“Process %d is created.\n”,_pid);

Assertion: always executable
Ex. assert(x + y == z)

E i d d it lExpression: depends on its value
Ex. x+3>0, 0, 1, 2
Ex skip trueEx. skip, true

Send: depends on buffer status
Ex ch1!m is executable only if ch1 is not fullEx. ch1!m is executable only if ch1 is not full

Receive: depends on buffer status
Ex. ch1?m is executable only if ch1 is not emptyy p y

11

Critical Section ExampleCritical Section Example
[root@moonzoo spin test]# ls[root@moonzoo spin_test]# ls
crit.pml
[root@moonzoo spin_test]# spin -a crit.pml
[root@moonzoo spin_test]# ls

i l b h

bool lock;
byte cnt;

crit.pml pan.b pan.c pan.h pan.m pan.t
[root@moonzoo spin_test]# gcc pan.c
[root@moonzoo spin_test]# a.out
pan: assertion violated (cnt<=1) (at depth 8)

active[2] proctype P() {
!lock -> lock=true;

t t 1

pan: assertion violated (cnt< 1) (at depth 8)
pan: wrote crit.pml.trail
Full statespace search for:

never claim - (none specified)
ti i l ticnt=cnt+1;

printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;
lock false;

assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 36 byte, depth reached 16, errors: 1lock=false;
}

active proctype Invariant() {

State vector 36 byte, depth reached 16, errors: 1
119 states, stored
47 states, matched

166 transitions (= stored+matched)
0 t i tactive proctype Invariant() {

assert(cnt <= 1);
}

0 atomic steps
hash conflicts: 0 (resolved)
4.879 memory usage (Mbyte)
[root@moonzoo spin test]# ls

12

[root@moonzoo spin_test]# ls
a.out crit.pml crit.pml.trail pan.b pan.c pan.h
pan.m pan.t

Critical Section Example (cont.)Critical Section Example (cont.)
[root@moonzoo spin_test]# spin -t -p crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2

1: proc 1 (P) line 5 "crit pml" (state 1) [(!(lock))]1: proc 1 (P) line 5 crit.pml (state 1) [(!(lock))]
2: proc 0 (P) line 5 "crit.pml" (state 1) [(!(lock))]
3: proc 1 (P) line 5 "crit.pml" (state 2) [lock = 1]
4: proc 1 (P) line 6 "crit.pml" (state 3) [cnt = (cnt+1)]

1 i i h !1 is in the crt sec!
5: proc 1 (P) line 7 "crit.pml" (state 4) [printf('%d is in the crt sec!\\n',_pid)]
6: proc 0 (P) line 5 "crit.pml" (state 2) [lock = 1]
7: proc 0 (P) line 6 "crit.pml" (state 3) [cnt = (cnt+1)]7: proc 0 (P) line 6 crit.pml (state 3) [cnt (cnt 1)]

0 is in the crt sec!
8: proc 0 (P) line 7 "crit.pml" (state 4) [printf('%d is in the crt sec!\\n',_pid)]

spin: line 13 "crit.pml", Error: assertion violated
i t t f f il d ti t((t 1))spin: text of failed assertion: assert((cnt<=1))

9: proc 2 (Invariant) line 13 "crit.pml" (state 1) [assert((cnt<=1))]
spin: trail ends after 9 steps
#processes: 3#processes: 3

lock = 1
cnt = 2

9: proc 2 (Invariant) line 14 "crit.pml" (state 2) <valid end state>
9 1 (P) li 8 " it l" (t t 5)

13

9: proc 1 (P) line 8 "crit.pml" (state 5)
9: proc 0 (P) line 8 "crit.pml" (state 5)

3 processes created

Revised Critical Section ExampleRevised Critical Section Example

bool lock;
byte cnt; [root@moonzoo revised]# a.out

F ll t t h f

active[2] proctype P() {
atomic{ !lock -> lock=true;}

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles (not selected){ ;}

cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);
cnt=cnt-1;

acceptance cycles - (not selected)
invalid end states +

State vector 36 byte depth reached 14 errors: 0cnt cnt 1;
lock=false;

}

State-vector 36 byte, depth reached 14, errors: 0
62 states, stored
17 states, matched
79 transitions (= stored+matched)

active proctype Invariant() {
assert(cnt <= 1);

}

79 transitions (stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

} 4.879 memory usage (Mbyte)

14

Deadlocked Critical Section ExampleDeadlocked Critical Section Example
[[root@moonzoo deadlocked]# a out

bool lock;
byte cnt;

[[root@moonzoo deadlocked]# a.out
pan: invalid end state (at depth 3)

(Spin Version 4.2.7 -- 23 June 2006)byte cnt;

active[2] proctype P() {
atomic{ !lock > lock==true;}

(Sp e s o 3 Ju e 006)
Warning: Search not completed

+ Partial Order Reduction

atomic{ !lock -> lock==true;}
cnt=cnt+1;
printf("%d is in the crt sec!\n",_pid);

t t 1

Full statespace search for:
never claim - (none specified)
assertion violations +

cnt=cnt-1;
lock=false;

}

acceptance cycles - (not selected)
invalid end states +

active proctype Invariant() {
assert(cnt <= 1);

State-vector 36 byte, depth reached 4, errors: 1
5 states, stored
0 states, matched
5 t iti (t d t h d)

();
} 5 transitions (= stored+matched)

2 atomic steps
hash conflicts: 0 (resolved)

15

4.879 memory usage (Mbyte)

Deadlocked Critical Section Example (cont.)Deadlocked Critical Section Example (cont.)

[root@moonzoo deadlocked]# spin -t -p deadlocked_crit.pml
Starting P with pid 0
Starting P with pid 1
Starting Invariant with pid 2
1: proc 2 (Invariant) line 13 "deadlocked crit.pml" (state 1) p () _ p ()

[assert((cnt<=1))]
2: proc 2 terminates
3: proc 1 (P) line 5 "deadlocked crit pml" (state 1) [(!(lock))]3: proc 1 (P) line 5 deadlocked_crit.pml (state 1) [(!(lock))]
4: proc 0 (P) line 5 "deadlocked_crit.pml" (state 1) [(!(lock))]

spin: trail ends after 4 steps
#processes: 2#processes: 2

lock = 0
cnt = 0

4 1 (P) li 5 "d dl k d it l" (t t 2)4: proc 1 (P) line 5 "deadlocked_crit.pml" (state 2)
4: proc 0 (P) line 5 "deadlocked_crit.pml" (state 2)

3 processes created

16

Options in XSPINOptions in XSPIN

N h l d ll t h i tNow you have learned all necessary techniques to
verify common problems in the SW development

17

Communication Using Message ChannelsCommunication Using Message Channels

Spin provides communications through
various types of message channels yp g

Buffered or non-buffered (rendezvous comm.)
Various message typesVarious message types
Various message handling operators

Syntax
chan ch1 = [2] of { bit byte};chan ch1 [2] of { bit, byte};

• ch1!0,10;ch1!1,20
• ch1?b bt;ch1?1 bt Sender (1,20) (0,10) Receiver• ch1?b,bt;ch1?1,bt

chan ch2= [0] of {bit, byte}

18

Operations on ChannelsOperations on Channels

Basic channel inquiry
len(ch)
empty(ch)
full(ch)
nempty(ch)nempty(ch)
nfull(ch)

Additional message passing operatorsg g
ch?[x,y]: polling only
ch?<x,y>: copy a message without removing it
ch!!x y: sorted sending (increasing order)ch!!x,y: sorted sending (increasing order)
ch??5,y: random receiving
ch?x(y) == ch?x,y (for user’s understandability)

Be careful to use these operators inside of expressions
They have side-effects, which spin may not allow

19

Faulty Data Transfer Protocol Faulty Data Transfer Protocol
(pg 27, data switch model proposed at 1981 at Bell labs)(pg 27, data switch model proposed at 1981 at Bell labs)

mtype={ini ack dreq data shutup quiet dead}mtype={ini,ack, dreq,data, shutup,quiet, dead}
chan M = [1] of {mtype};
chan W = [1] of {mtype}; active proctype Wproc() {

W?ini; /* wait for ini*/
active proctype Mproc()
{

W!ini; /* connection */
M?ack; /* handshake */

W?ini; / wait for ini /
M!ack; /* acknowledge */

do /* 3 options: */
M?ack; / handshake /

timeout -> /* wait */
if /* two options: */

:: W?dreq-> /* data requested */
M!data /* send data */

:: W?data-> /* receive data */
skip /* no response */

:: W!shutup; /* start shutdown */
:: W!dreq; /* or request data */

do
:: M?data > W!data

skip / no response /
:: W?shutup->

M!shutup; /* start shutdown*/
break

:: M?data -> W!data
:: M?data-> W!shutup;

break
od

od;

W?quiet;
M!dead;

fi;
M?shutup;
W!quiet;
M?dead;

M!dead;
}

M W

Channel W

20

M?dead;
}

Mproc Wproc
Channel M

The Sieve of Eratosthenes (pg 326)The Sieve of Eratosthenes (pg 326)
/* proctype sieve(chan c; int prime)/

The Sieve of Eratosthenes (c. 276-196 BC)
Prints all prime numbers up to MAX

*/

p yp (; p)
{ chan child = [0] of { mtype, int };

bool haschild; int n;
printf("MSC: %d is prime\n", prime);

end: do#define MAX 25
mtype = { number, eof };
chan root = [0] of { mtype, int };

end: do
:: c?number(n) ->

if
:: (n%prime) == 0 -> printf("MSC: %d

init
{ int n = 2;

(p) p (
= %d*%d\n", n, prime, n/prime)

:: else ->
if
:: !haschild > /* new prime */run sieve(root, n);

do
:: (n < MAX) -> n++; root!number(n)
:: (n >= MAX) -> root!eof(0); break

:: !haschild -> /* new prime */
haschild = true;
run sieve(child, n);

:: else ->:: (n > MAX) > root!eof(0); break
od

}
child!number(n)

fi;
fi

:: c?eof(0) > break:: c?eof(0) -> break
od;
if
:: haschild -> child!eof(0)

21

()
:: else
fi

}

