Equalities and Uninterpreted Functions
Chapter 3 3

Decision Procedures
An Algorithmic Point of View

D.Kroening O.Strichman Revision 1.0

Outline

Decision Procedures — Equalities and Uninterpreted Functions 2

Equality Logic

@ A Boolean combination of Equalities and Propositions

:Cl::112/\(562::E3\/ﬁ((1131:Ig,)/\b/\xl:2))

e We always push negations inside (NNF):

x1 =22 A (22 =23V ((r1 # 23) A “bA 21 # 2))

Decision Procedures — Equalities and Uninterpreted Functions 3

Syntax of Equality Logic

formula : formula Vv formula
| —formula
| atom
atom . term-variable = term-variable

| term-variable = constant

| Boolean-variable

e The term-variables are defined over some (possible infinite)
domain. The constants are from the same domain.

@ The set of Boolean variables is always separate from the set of
term variables

Decision Procedures — Equalities and Uninterpreted Functions 4

Expressiveness and complexity

@ Allows more natural description of systems, although
technically it is as expressible as Propositional Logic.

@ Obviously NP-hard.

@ In fact, it is in NP, and hence NP-complete, for reasons we
shall see later.

Decision Procedures — Equalities and Uninterpreted Functions 5

Equality logic with uninterpreted functions

formula : formula VvV formula
| —formula
| atom

atom : term = term

| Boolean-variable

term . term-variable
| function (list of terms)

The term-variables are defined over some (possible infinite)
domain. Constants are functions with an empty list of terms.

Decision Procedures — Equalities and Uninterpreted Functions

Uninterpreted Functions

o Every function is a mapping from a domain to a range.

o Example: the '+’ function over the naturals N is a mapping
from (N x N) to N.

Decision Procedures — Equalities and Uninterpreted Functions 7

Uninterpreted Functions

@ Suppose we replace '+’ by an uninterpreted binary function

f(a,b)
o Example:
r1 4 w2 = w3+ x4 is replaced by f(x1,22) = f(x3,74)
@ We lost the 'semantics’ of '+', as f can represent any binary

function.

'Loosing the semantics’ means that f is not restricted by any
axioms or rules of inference.

o But f is still a function!

Decision Procedures — Equalities and Uninterpreted Functions 8

Uninterpreted Functions

@ The most general axiom for any function is functional
consistency.

o Example: if x =y, then f(z) = f(y) for any function f.

@ Functional consistency axiom schema:

r1=TIN Ay =, = f(z1,...,1) = f(2h,..., 1))

@ Sometimes, functional consistency is all that is needed for a
proof.

Decision Procedures — Equalities and Uninterpreted Functions 9

Example: Circuit Transformations

e
> R, Latch
e Circuits consist of
combinational gates and ! Combi-
latches (registers) national
part
(I

Decision Procedures — Equalities and Uninterpreted Functions 10

Example: Circuit Transformations

|
Latch

o Circuits consist of .
combinational gates and } Combi-

latches (registers) national
part
(I
@ The combinational gates
can be modeled using
functions f(zy) = zVy
o
@ The latches can be Ry = [f(Ry,I)

modeled with variables

Decision Procedures — Equalities and Uninterpreted Functions 10

Example: Circuit Transformations

in

> - |

Decision Procedures — Equalities and Uninterpreted Functions

11

Example: Circuit Transformations

in in: a primary input of the circuit

> - |

Decision Procedures — Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

in in: a primary input of the circuit

P Iy ‘ F.G,H, K, D: some functions
over bit-vectors

> - |

Decision Procedures — Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

in in: a primary input of the circuit

P Iy ‘ F.G,H, K, D: some functions
over bit-vectors

Li,...,Ls: latches (registers)

Decision Procedures — Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

in in: a primary input of the circuit

P Iy ‘ F.G,H, K, D: some functions
over bit-vectors

(©)
° CH Li,...,Ls: latches (registers)

< D (' a predicate over bit-vectors

1 0 a multiplexer (case-split)

S

Decision Procedures — Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

m

assembly line

Ly =
o [o o] L =
Ly =

(©) @) L =
D Ls

Decision Procedures — Equalities and Uninterpreted Functions

(©)
CH @ Formal model:
()

o A pipeline processes data in stages

o Data is processed in parallel — as in an

f)

Ly

k(g9(L1))

h(L1)

c(L2)? L3 : I(Ls)

12

Example: Circuit Transformations

Stage 1 |

assembly line

Ly =
o [o o] L =
Ly =

(©) @) L =
D Ls

Decision Procedures — Equalities and Uninterpreted Functions

(©)
CH @ Formal model:
()

o A pipeline processes data in stages

o Data is processed in parallel — as in an

f)

Ly

k(g9(L1))

h(L1)

c(L2)? L3 : I(Ls)

12

Example: Circuit Transformations

m

Stage 2

o A pipeline processes data in stages

o Data is processed in parallel — as in an

assembly line

@ Formal model:

L =
L, =
Ly =
Ly =
Ls

Decision Procedures — Equalities and Uninterpreted Functions

f)

Ly

k(g9(L1))

h(L1)

c(L2)? L3 : I(Ls)

12

Example: Circuit Transformations

m

assembly line

Ly =
o [o] o] L =
Ly =

(©) @) L =
D Ls

Stage 3
> - |

Decision Procedures — Equalities and Uninterpreted Functions

(©)
CH @ Formal model:
()

o A pipeline processes data in stages

o Data is processed in parallel — as in an

f)

Ly

k(g9(L1))

h(L1)

c(L2)? L3 : I(Ls)

12

Example: Circuit Transformations

m

@ The maximum clock frequency depends
on the longest path between two latches

Q CH @ Note that the output of ¢ is used as input
° to k

o We want to speed up the design by
P o ‘ L ‘ I3 ‘ postponing k to the third stage

Decision Procedures — Equalities and Uninterpreted Functions 13

Example: Circuit Transformations

m

I
P ‘ @ The maximum clock frequency depends
on the longest path between two latches

Q CH @ Note that the output of ¢ is used as input
° to k

o We want to speed up the design by
P o ‘ = ‘ i ‘ postponing k to the third stage

o Also note that the circuit only uses one of

e Q L3 or Ly, never both
0 = We can remove one of the latches

Decision Procedures — Equalities and Uninterpreted Functions 13

Example: Circuit Transformations

Decision Procedures — Equalities and Uninterpreted Functions 14

Example: Circuit Transformations

Ly = f{)
L, = I4

Ly = k(g9(L1))
Li = h(Ly)

L5 = C(Lz)?L:J, . l(L4)

Ls

Decision Procedures — Equalities and Uninterpreted Functions

/
1

/
2

!
3

Ls

f(1)

o(L1)

o(L1) ?g(Ly) : h(Ly)
Ly ?k(L3) : 1(L3)

15

Example: Circuit Transformations

Ly = f(I) .

L, = I; /1 : f((I,))

Ly = Ho(L) A
Ly = h(Ly) 3 = c(Ly)7g(Ly) : h(Ly)

Ly = Ly?k(Ly) : UL
Ls = o(L2)?Ls : I(Ls) > 2 Th(L3) - (L)

Ls £ Lt

e Equivalence in this case holds regardless of the actual
functions

e Conclusion: can be decided using Equality Logic and
Uninterpreted Functions

Decision Procedures — Equalities and Uninterpreted Functions 15

Transforming UFs to Equality Logic using Ackermann’s reduction
o O S

e Given: a formula V%" with uninterpreted functions

e For each function in V%"

1. Number function instances -~ Fy(Fi(z)) =0
(from the inside out)

Decision Procedures — Equalities and Uninterpreted Functions 16

Transforming UF's to Equality Logic using Ackermann’s reduction

e Given: a formula V%" with uninterpreted functions

e For each function in V%"

J1
1. Number function instances .) (Fy(z)) =0
(from the inside out) ﬁ’_’
2

2. Replace each function in-

. . — =0
stance with a new variable

Decision Procedures — Equalities and Uninterpreted Functions 16

Transforming UF's to Equality Logic using Ackermann’s reduction

e Given: a formula V%" with uninterpreted functions

e For each function in V%"

J1
1. Number function instances .) (Fy(z)) =0
(from the inside out) ﬁ’_’
2

2. Replace each function in- f2=0
stance with a new variable

3. Add functional consistency . ((z=f1) — (fo=f1
constraint to UL for every — fo=0
pair of instances of the same
function.

Decision Procedures — Equalities and Uninterpreted Functions 16

Ackermann’s reduction: Example

Suppose we want to check
r1 # 12 V F(.%'l) = F($2) vV F(l‘l) #* F(l’3)

for validity.

@ First number the function instances:

r1 £ 12V Fl(xl) = Fg(l‘z) vV Fl(xl) #* F3(I3)

Decision Procedures — Equalities and Uninterpreted Functions 17

Ackermann’s reduction: Example

Suppose we want to check
r1 # 12 V F(.%'l) = F($2) vV F(l‘l) #* F(l’3)

for validity.

@ First number the function instances:

r1 £ 12V Fl(:L“l) = Fg(l‘z) vV Fl(xl) #* F3(I3)

@ Replace each function with a new variable:

r1F#Fx2V fi=foVfi1#f3

Decision Procedures — Equalities and Uninterpreted Functions 17

Ackermann’s reduction: Example

Suppose we want to check
r1 # 12 V F(.%'l) = F($2) vV F(l‘l) #* F(l’3)

for validity.

@ First number the function instances:

r1 £ 12V Fl(xl) = Fg(l‘z) vV Fl(xl) #* F3(I3)

@ Replace each function with a new variable:

r1F#Fx2V fi=foVfi1#f3

© Add functional consistency constraints:
(r1=22— f1=f2) A
(r1=23—=fi=/fz) N | —
(12 =123 — f2=f3)

Decision Procedures — Equalities and Uninterpreted Functions 17

Transforming UF's to Equality Logic using Bryant’s reduction

e Given: a formula oY with uninterpreted functions

e For each function in V%"

1. Number function instances ~ Fi(a) = F»(b)
(from the inside out)

Decision Procedures — Equalities and Uninterpreted Functions 18

Transforming UF's to Equality Logic using Bryant’s reduction

e Given: a formula oY with uninterpreted functions

e For each function in V%"

1. Number function instances ~ Fi(a) = F»(b)
(from the inside out)

2. Replace each function instance -~ F} = F}
F; with an expression F*

Decision Procedures — Equalities and Uninterpreted Functions 18

Transforming UF's to Equality Logic using Bryant’s reduction

e Given: a formula oY with uninterpreted functions

e For each function in V%"

1. Number function instances ~ Fi(a) = F»(b)
(from the inside out)

2. Replace each function instance -~ F} = F}
F; with an expression F*

case x1=x; :f1
To=1x; fo
* . . case a=2b:
F,L- = : fl — < fl
true : f>
Ti—1 = Tt fi1
true : fi

Decision Procedures — Equalities and Uninterpreted Functions 18

Example of Bryant’s reduction

@ Original formula:

a=b — F(G(a) = F(G(b))

Decision Procedures — Equalities and Uninterpreted Functions 19

Example of Bryant’s reduction

@ Original formula:

a=b — F(G(a) = F(G(b))

@ Number the instances:
a=>b — Fi(Gi(a) = F2(G2(D))

Decision Procedures — Equalities and Uninterpreted Functions 19

Example of Bryant’s reduction

@ Original formula:

a=b — F(G(a) = F(G(b))

@ Number the instances:
a=>b — Fi(Gi(a) = F2(G2(D))

@ Replace each function application with an expression:

a=b— Ff =F5

where
Ff = h
R - (case Gi=G5 :fi)
true s fo
Gi = 0
o /case a=>b :gl\

Decision Procedures — Equalities and Uninterpreted Functions 19

Using uninterpreted functions in proofs

@ Uninterpreted functions give us the ability to represent an
abstract view of functions.

@ It over-approximates the concrete system.
1+ 1=1is a contradiction
But
F(1,1) =1 is satisfiable!

Decision Procedures — Equalities and Uninterpreted Functions 20

Using uninterpreted functions in proofs

@ Uninterpreted functions give us the ability to represent an
abstract view of functions.
@ It over-approximates the concrete system.
1+ 1=1is a contradiction
But
F(1,1) =1 is satisfiable!

o Conclusion: unless we are careful, we can give wrong answers,
and this way, loose soundness.

Decision Procedures — Equalities and Uninterpreted Functions 20

Using uninterpreted functions in proofs

@ In general, a sound but incomplete method is more useful
than an unsound but complete method.

@ A sound but incomplete algorithm for deciding a formula with
uninterpreted functions V%"
@ Transform it into Equality Logic formula ¢

Q If <pE is unsatisfiable, return 'Unsatisfiable’
© Else return 'Don’t know’

Decision Procedures — Equalities and Uninterpreted Functions 21

Using uninterpreted functions in proofs

@ Question #1: is this useful?

Decision Procedures — Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

@ Question #1: is this useful?

@ Question #2: can it be made complete in some cases?

Decision Procedures — Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

@ Question #1: is this useful?

@ Question #2: can it be made complete in some cases?

@ When the abstract view is sufficient for the proof, it enables
(or at least simplifies) a mechanical proof.

Decision Procedures — Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables
(or at least simplifies) a mechanical proof.

So when is the abstract view sufficient?

Decision Procedures — Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

@ (common) Proving equivalence between:

o Two versions of a hardware design (one with and one without
a pipeline)
e Source and target of a compiler (" Translation Validation”)

Decision Procedures — Equalities and Uninterpreted Functions 23

Using uninterpreted functions in proofs

@ (common) Proving equivalence between:

o Two versions of a hardware design (one with and one without
a pipeline)
e Source and target of a compiler (" Translation Validation”)

e (rare) Proving properties that do not rely on the exact
functionality of some of the functions

Decision Procedures — Equalities and Uninterpreted Functions 23

Example: Translation Validation

@ Assume the source program has the statement
z=(r1+y1) - (22 +32);
which the compiler turned into:
up =1+ y1;

Up = T2 + Y2,
Z = U1 - ug,

Decision Procedures — Equalities and Uninterpreted Functions 24

Example: Translation Validation

@ Assume the source program has the statement
z=(x1+y1) (x2+y2);
which the compiler turned into:
up =1+ y1;
U2 = T2 + Y2;
Z = Uy - u2;
@ We need to prove that:

(ui=z14+y1 AN w=x2+y2 AN 2z=uj-up)
— (z=(r1+101) (22 +12))

Decision Procedures — Equalities and Uninterpreted Functions 24

Example: Translation Validation

e Claim: oY is valid

o We will prove this by reducing it to an Equality Logic formula

E _ [(MZ?Eszl:yz — fi=fo) /\]_}
4 (1= fiNup=fa — g1=g2)
(mi=f Nuw=fi N z=g1) — 2z=g)

Decision Procedures — Equalities and Uninterpreted Functions 25

Uninterpreted functions: usability

@ Good: each function on the left can be mapped to a function
on the right with equivalent arguments

Decision Procedures — Equalities and Uninterpreted Functions 26

Uninterpreted functions: usability

@ Good: each function on the left can be mapped to a function
on the right with equivalent arguments

o Bad: almost all other cases

o Example:

Left Right
T+ x 2

Decision Procedures — Equalities and Uninterpreted Functions 26

Uninterpreted functions: usability

o This is easy to prove:

(r1 =220 Ay1 =1y2) — (1 + Y1 = 22 + ¥2)

Decision Procedures — Equalities and Uninterpreted Functions 27

Uninterpreted functions: usability

o This is easy to prove:

(r1 =220 Ay1 =1y2) — (1 + Y1 = 22 + ¥2)

@ This requires commutativity:

(r1=22N1y1 =1y2) — (1 +y1 = Y2 + x2)

Decision Procedures — Equalities and Uninterpreted Functions 27

Uninterpreted functions: usability

o This is easy to prove:

(r1 =220 Ay1 =1y2) — (1 + Y1 = 22 + ¥2)

@ This requires commutativity:

(r1=22N1y1 =1y2) — (1 +y1 = Y2 + x2)

o Fix by adding:

(r1+y1 =91 +21) A (22 +y2 = yo + 12)

Decision Procedures — Equalities and Uninterpreted Functions 27

Uninterpreted functions: usability

o This is easy to prove:

(z1 =22 Ay1 =1y2) — (21 +y1 = 22 + 1)
@ This requires commutativity:

(1 =22 Ay1 =12) — (21 +y1 = y2 + 22)
o Fix by adding:

(r1+y1 =91 +21) A (22 + 92 = 2 + 72)

o What about other cases?
Use more rewriting rules!

Decision Procedures — Equalities and Uninterpreted Functions 27

mple: equivalence of C rams (1/4)

int power3(int in) {

out = in;
int power3new(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

@ These two functions return the same value regardless if it is
"*' or any other function.

e Conclusion: we can prove equivalence by replacing "*' with an
uninterpreted function

Decision Procedures — Equalities and Uninterpreted Functions

28

From programs to equations

o But first we need to know how to turn programs into
equations.

@ There are several options — we will see static single
assignment for bounded programs.

Decision Procedures — Equalities and Uninterpreted Functions 29

Static Single Assignment (SSA) form

@ — see compiler class

@ ldea: Rename variables such that each variable
is assigned exactly once

X=X+y; . X1¥X0%Yyo;
Example: x=x%2; X2=X1*2;
al[i]l=100; ai [ig]=100;

Decision Procedures — Equalities and Uninterpreted Functions 30

Static Single Assignment (SSA) form

@ — see compiler class

@ ldea: Rename variables such that each variable
is assigned exactly once

X=X+y; . X1¥X0%Yyo;
Example: x=x%2; X2=X1*2;
al[i]l=100; ai [ig]=100;

Read assignments as equalities

o Generate constraints by simply conjoining these equalities
X1¥X0*yo;

Example: o) To=x1%2 A
21 (0] =100; axfio] = 100

Decision Procedures — Equalities and Uninterpreted Functions 30

SSA for bounded programs

What about if? Branches are handled using ¢-nodes.

int main() {
int x, y, 2;
y=8;
if (x)
y——s
else
y+t;

’

z=y+1;

Decision Procedures — Equalities and Uninterpreted Functions 31

SSA for bounded programs

What about if? Branches are handled using ¢-nodes.

int main() { int main() {
int x, y, 2; int x, y, Z;
y=8; y1=8;
if (x) if (%)
y=—: [y2=y1-1;
else L__I else
yt+t; y3=y1tl;

ya=0(y2, y3);

2=y+l; z1=ya+1;

Decision Procedures — Equalities and Uninterpreted Functions 31

SSA for bounded programs

What about if? Branches are handled using ¢-nodes.

int main() { int main() { y1 =8 A
int x, y, 2; int x, y, Z; Yo =y1—1 A
y=8; y1=8; 3=y +1 A
. . Ya =
if (x) if (xq)

y——; ! y2=y1—1; | (x0#07y2 . 3/3)/\
else L__I else L__I z1=ya+1
yt+t; y3=y1tl;

ya=0(y2, y3);

2=y+l; z1=ya+1;

Decision Procedures — Equalities and Uninterpreted Functions 31

SSA for bounded programs

What about loops?
— We unwind them!

void £(...) {

while(cond) {
BODY;

}

Remainder;

Decision Procedures — Equalities and Uninterpreted Functions 32

SSA for bounded programs

What about loops?
— We unwind them!

void £(...) {

if (cond) {
BODY;
while(cond) {
BODY;
}
}

Remainder;

Decision Procedures — Equalities and Uninterpreted Functions 32

SSA for bounded programs

What about loops?
— We unwind them!

void £(...) {

if (cond) {
BODY;
if (cond) {
BODY;
while(cond) {
BODY;

}
}
}

Remainder;

Decision Procedures — Equalities and Uninterpreted Functions 32

SSA for bounded programs

Some caveats:
e Unwind how many times?

@ Must preserve locality of variables declared inside loop

Decision Procedures — Equalities and Uninterpreted Functions 33

SSA for bounded programs

Some caveats:
e Unwind how many times?

@ Must preserve locality of variables declared inside loop

There is a tool available that does this
o CBMC - C Bounded Model Checker
e Bound is verified using unwinding assertions

@ Used frequently for embedded software
—— Bound is a run-time guarantee

Integrated into Eclipse

Decision problem can be exported

Decision Procedures — Equalities and Uninterpreted Functions 33

SSA for bounded programs: CBM

& CbmSatabs - md2_bounds.c - Eclipse SDK
Ble Edit Refoctor Navigate Search Project Run Window Help

Ok F-0-Q- |4 & -
. Navigator 53 = 0| §,§ md2_bounds.tsk
5%~
2 for (1= 05
= demo ~
o G Resuls
5] -projec /* Encrypt
£5F bounds. sk Lo
BT ot
o
HE

E 8 int_overfow.tsk.
€8 E ma2_bounds sk
EFE pointer_oby.tsk

B E pointer_to local tsk

BE smalc++.1sk L L
L threads . tsk ?
BE threnci 1

C

M GEC/C++ | D ComeSatabs

£.f md2_bounds.c 52

1< 16; 1+4)

block (18 rounds).

i+4) 4
P 3+4)

1) & oxee:

=5

\/ md2_bounds.c bounds
\w/ md2_bounds.c beunds
\/ md2_bounds.c bounds
\w/ md2_bounds.c array bound
\o/ md2_bounds.c array bound
\a/ md2 bounds.c bounds

Check Selection _ Check by File Check by Property Chec Al | Stop Selection Stop Al

array " upper bound

dereference failre: amay "state lower bound
dereference failure: array "state’ upper bound
dereference failure: array "block'lower bound
dereference failre: array “block upper bound
array "X upper bound

array "PI_SUBST upper bound

array " upper bound

dereference failure: array "block'lower bound
dereference failre: array "block upper bound
array “P1 SUBST uooer bound

Stop Session Terminate Session Reset Session

Expression

5241 < 38

10 <0) || e:md2_bounds::MD2TI

(ciimd2_bounds :MDZTransform::

1 <) |1 e::md2_bounds::MD2T:

(c::md2_bounds :MDZTransform:

TRUE

teoss

TRUE

16 <) 1] e::md2_bounds::MD2T:

(c::md2_bounds :MDZTransform:

(t ~ (unsianed (= + block) < ¥
>

Trace Problems | £ log 7

Running Cadence SMV: smy -force ift
Cadence SMY produced counterexample
Simulating f
Spurious transiton found

Trace s spurious

Refining transition

=% CEGAR Loop Iteration &

Running Cadence SMV: smy -force st

=g

-

Decision Procedures — Equalities and Uninterpreted Functions

Example: equivalence of C programs (2/4)

int power3(int in) {

out = in;
int power3mnew(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

Decision Procedures — Equalities and Uninterpreted Functions 35

mple: equivalence of C

int power3(int in) {

out = in;
int power3mnew(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

}

Static single assignment (SSA) form:
out; = A
outy = outy x in A\ out] = (in *in) x in

outs = outy x in

Prove that both functions return the same value:
outs = out)

Decision Procedures — Equalities and Uninterpreted Functions 35

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:

outi = AN

outy = outy x in A\ out| = (in xin) * in
outz = outy *x in

With uninterpreted functions:

out; = in AN

outy = F(outy,in) A outy = F(F(in,in),in)
outs = F(outy,in)

Decision Procedures — Equalities and Uninterpreted Functions 36

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:

outi = AN

outy = outy x in A\ out] = (in *in) x in
outz = outy *x in

With uninterpreted functions:

out; = in AN

outy = F(outy,in) A outy = F(F(in,in),in)
outs = F(outy,in)

With numbered uninterpreted functions:

out; = A

outy = Fi(outy,in) A out| = Fy(F5(in,in),in)
outs = Fy(outy,in)

Decision Procedures — Equalities and Uninterpreted Functions 36

Example: equivalence of C

With numbered uninterpreted functions:

outy = in N

outy = Fi(outy,in) A out| = Fu(F3(in,in),in)
outs = Fy(outy,in)

Decision Procedures — Equalities and Uninterpreted Functions 37

Example: equivalence of C

With numbered uninterpreted functions:

outy = in N
outy = Fy(outy,in) A
outs = Fy(outy,in)

out| = Fu(F3(in,in),in)

Ackermann’s reduction:
outi = AN

gog ©ooutr = fi A
outz = f2

Decision Procedures — Equalities and Uninterpreted Functions

oF

Couth = fy

37

Example: equivalence of C rams (4/4)

With numbered uninterpreted functions:

outy = in N

outy = Fi(outy,in) A out) = Fy4(F5(in,in),in)
outs = Fy(outy,in)

Ackermann’s reduction:
outi = AN

©E outy = f1 A o out) = fa
outz = f2

The verification condition:

[/ (outy = outr— f1 = f2)
(out; =in — f1 = f3)
(outs = f3 — f1 = fa)
(Outz =in — fo= f3)
(outa = f3 — fa = f3)

L\ (in=fz — f3=fa)

Decision Procedures — Equalities and Uninterpreted Functions 37

ANeE NP | — outz = out)

> > > > >

Uninterpreted functions: simplifications

o Let n be the number of instances of F'()
e Both reduction schemes require O(n?) comparisons
e This can be the bottleneck of the verification effort

Decision Procedures — Equalities and Uninterpreted Functions 38

Uninterpreted functions: simplifications

o Let n be the number of instances of F'()
e Both reduction schemes require O(n?) comparisons
e This can be the bottleneck of the verification effort

!

@ Solution: try to guess the pairing of functions

@ Still sound: wrong guess can only make a valid formula invalid

Decision Procedures — Equalities and Uninterpreted Functions 38

Simplifications (1)

o Given z1 = 2, xp = 2, x3 = 2%, prove = 01 = 05.

o1=(r1+(a-22)) Na=2x3+5 Left
——— S~——
i f2

oy = (2] +(b-25)) ANb=a5+5 Right
%f,—/ T
3 4

@ 4 function instances — 6 comparisons

Decision Procedures — Equalities and Uninterpreted Functions 39

Simplifications (1)

o Given z1 = 2, xp = 2, x3 = 2%, prove = 01 = 05.

o1=(r1+(a-22)) Na=2x3+5 Left
——— S~——
i f2

oy = (2] +(b-25)) ANb=a5+5 Right
SN——rr S——
I3 fa
@ 4 function instances — 6 comparisons
@ Guess: validity does not rely on f1 = fo oron f3= fa

@ Idea: only enforce functional consistency of pairs (Left,Right).

Decision Procedures — Equalities and Uninterpreted Functions 39

Simplifications

oy = () +(b-xh))ANb=125+5 Right
T \f,—/
3 4

@ Down to 4 comparisons!

Decision Procedures — Equalities and Uninterpreted Functions 40

Simplifications (2)

o1=(xr1+(a-22)) Na=2x3+5 Left
— N——
1 J2

oy = (2] +(b-25))ANb=2a5+5 Right
b I
3 4

@ Down to 4 comparisons!

@ Another guess: equivalence only depends on f; = f3 and
fo=fa

@ Pattern matching may help here

Decision Procedures — Equalities and Uninterpreted Functions 40

Simplifications (3)

o1 =(r1+(a-22)) Na=2x3+5 Left
— N——
f1 f2

o2 =(zy +(b-25)) ANb=2a5+5 Right

Match according /\ +
to patterns v . 1 /\
('signatures’) /\

v v 1

Down to 2 comparisons! f1; f3 ‘ f2, fa

Decision Procedures — Equalities and Uninterpreted Functions 41

Simplifications (4)

o1=(r1+(a-22)) Na=x3+5 Left
S——— N~——
fi 12

oo = () +(b-25) Nb=a5+5 Right
~—— S~——
13 fa

Substitute

+
?/\
intermediate /\
variables (in the v v
example: a, b) /\

v 5

Simplifications (4)

oo = () +(b-25) Nb=a5+5 Right

—_—— —
f3 fa
+ +
Substitute 1/\ ’1;/\
intermediate /\ . /\
. . X M £ v
variables (in the ; /\
example: a, b) +
v 5

0 5 fi, 13

Decision Procedures — Equalities and Uninterpreted Functions 42

The SSA example revisited (1)

With numbered uninterpreted functions:

outi = AN

outy = Fi(outy,in) A out| = Fu(F3(in,in),in)
outs = F(outy,in)

Decision Procedures — Equalities and Uninterpreted Functions 43

The SSA example revisited (1)

With numbered uninterpreted functions:

outi = AN

outy = Fi(outy,in) A out| = Fu(F3(in,in),in)
outs = F(outy,in)

Map Fj to Fi: Map F, to Fj:

F F

N N
Co A

Decision Procedures — Equalities and Uninterpreted Functions 43

The SSA example revisited (2)

With numbered uninterpreted functions:

outy = in N

outy = Fy(outy,in) A out) = F4(F3(in,in),in)
outs = Fy(outy,in)

Ackermann'’s reduction:
outy = AN

oL outy = f1 A oF : outy = fa
outs = fo

The verification condition has shrunk:

in — f1= f3)

[((outy
(outz = f3 — fa = fa)

A ; ;
) A (pf /\goﬂ — out3 = out)

Decision Procedures — Equalities and Uninterpreted Functions 44

Same example with Bryant’s reduction

With numbered uninterpreted functions:

outy = N

outy = Fi(outy,in) A out| = Fa(F3(in,in),in)
outs = F(outy,in)

Bryant's reduction:

outi = n AN 805 - out! =
(Pa . OUt2 - f]. /\ < case (case z::;e: Outl: ch;) = outy: fr)
()ut3 = f2 true : fa

The verification condition:

(¢F N f') — outs = out}

Decision Procedures — Equalities and Uninterpreted Functions 45

So is Equality Logic with UFs interesting?

@ It is expressible enough to state
something interesting.

@ It is decidable and more efficiently
solvable than richer logics, for example in
which some functions are interpreted.

© Models which rely on infinite-type
variables are expressed more naturally in
this logic in comparison with
Propositional Logic.

Decision Procedures — Equalities and Uninterpreted Functions 46

	Introduction to Equality Logic
	Definition, complexity

	Reducing uninterpreted functions to Equality Logic
	Using uninterpreted functions in proofs
	Simplifications

