
Decision Procedures
An Algorithmic Point of View

D.Kroening O.Strichman

Equalities and Uninterpreted Functions

Chapter 3

Revision 1.0

Outline

Decision Procedures – Equalities and Uninterpreted Functions 2

Equality Logic

A Boolean combination of Equalities and Propositions

x1 = x2 ∧ (x2 = x3 ∨ ¬((x1 = x3) ∧ b ∧ x1 = 2))

We always push negations inside (NNF):

x1 = x2 ∧ (x2 = x3 ∨ ((x1 6= x3) ∧ ¬b ∧ x1 6= 2))

Decision Procedures – Equalities and Uninterpreted Functions 3

Syntax of Equality Logic

formula : formula ∨ formula
| ¬formula
| atom

atom : term-variable = term-variable
| term-variable = constant
| Boolean-variable

The term-variables are defined over some (possible infinite)
domain. The constants are from the same domain.

The set of Boolean variables is always separate from the set of
term variables

Decision Procedures – Equalities and Uninterpreted Functions 4

Expressiveness and complexity

Allows more natural description of systems, although
technically it is as expressible as Propositional Logic.

Obviously NP-hard.

In fact, it is in NP, and hence NP-complete, for reasons we
shall see later.

Decision Procedures – Equalities and Uninterpreted Functions 5

Equality logic with uninterpreted functions

formula : formula ∨ formula
| ¬formula
| atom

atom : term = term
| Boolean-variable

term : term-variable
| function (list of terms)

The term-variables are defined over some (possible infinite)
domain. Constants are functions with an empty list of terms.

Decision Procedures – Equalities and Uninterpreted Functions 6

Uninterpreted Functions

Every function is a mapping from a domain to a range.

Example: the ’+’ function over the naturals N is a mapping
from 〈N × N〉 to N.

Decision Procedures – Equalities and Uninterpreted Functions 7

Uninterpreted Functions

Suppose we replace ’+’ by an uninterpreted binary function
f(a, b)

Example:

x1 + x2 = x3 + x4 is replaced by f(x1, x2) = f(x3, x4)

We lost the ’semantics’ of ’+’, as f can represent any binary
function.

’Loosing the semantics’ means that f is not restricted by any
axioms or rules of inference.

But f is still a function!

Decision Procedures – Equalities and Uninterpreted Functions 8

Uninterpreted Functions

The most general axiom for any function is functional
consistency.

Example: if x = y, then f(x) = f(y) for any function f.

Functional consistency axiom schema:

x1 = x′
1∧. . .∧xn = x′

n =⇒ f(x1, . . . , xn) = f(x′
1, . . . , x

′
n)

Sometimes, functional consistency is all that is needed for a
proof.

Decision Procedures – Equalities and Uninterpreted Functions 9

Example: Circuit Transformations

Circuits consist of
combinational gates and
latches (registers)

R1

I

Latch

Combi-
national
part

The combinational gates
can be modeled using
functions

The latches can be
modeled with variables

f(x, y) := x ∨ y

R′
1 = f(R1, I)

Decision Procedures – Equalities and Uninterpreted Functions 10

Example: Circuit Transformations

Circuits consist of
combinational gates and
latches (registers)

R1

I

Latch

Combi-
national
part

The combinational gates
can be modeled using
functions

The latches can be
modeled with variables

f(x, y) := x ∨ y

R′
1 = f(R1, I)

Decision Procedures – Equalities and Uninterpreted Functions 10

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

� in: a primary input of the circuit

PPPPPPPPPi

������)

F,G,H,K,D: some functions
over bit-vectors

@
@

@
@

@@I

�
�

�
�

��+

�
�

�
�

�
�

�
�

�
���

L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)

Decision Procedures – Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

� in: a primary input of the circuit

PPPPPPPPPi

������)

F,G,H,K,D: some functions
over bit-vectors

@
@

@
@

@@I

�
�

�
�

��+

�
�

�
�

�
�

�
�

�
���

L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)

Decision Procedures – Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

� in: a primary input of the circuit

PPPPPPPPPi

������)

F,G,H,K,D: some functions
over bit-vectors

@
@

@
@

@@I

�
�

�
�

��+

�
�

�
�

�
�

�
�

�
���

L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)

Decision Procedures – Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

� in: a primary input of the circuit

PPPPPPPPPi

������)

F,G,H,K,D: some functions
over bit-vectors

@
@

@
@

@@I

�
�

�
�

��+

�
�

�
�

�
�

�
�

�
���

L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)

Decision Procedures – Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

� in: a primary input of the circuit

PPPPPPPPPi

������)

F,G,H,K,D: some functions
over bit-vectors

@
@

@
@

@@I

�
�

�
�

��+

�
�

�
�

�
�

�
�

�
���

L1, . . . , L5: latches (registers)

� C: a predicate over bit-vectors

� a multiplexer (case-split)

Decision Procedures – Equalities and Uninterpreted Functions 11

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

A pipeline processes data in stages

Data is processed in parallel – as in an
assembly line

Formal model:

L1 = f(I)

L2 = L1

L3 = k(g(L1))

L4 = h(L1)

L5 = c(L2) ?L3 : l(L4)

Decision Procedures – Equalities and Uninterpreted Functions 12

Example: Circuit Transformations

Stage 1

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

A pipeline processes data in stages

Data is processed in parallel – as in an
assembly line

Formal model:

L1 = f(I)

L2 = L1

L3 = k(g(L1))

L4 = h(L1)

L5 = c(L2) ?L3 : l(L4)

Decision Procedures – Equalities and Uninterpreted Functions 12

Example: Circuit Transformations

Stage 2

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

A pipeline processes data in stages

Data is processed in parallel – as in an
assembly line

Formal model:

L1 = f(I)

L2 = L1

L3 = k(g(L1))

L4 = h(L1)

L5 = c(L2) ?L3 : l(L4)

Decision Procedures – Equalities and Uninterpreted Functions 12

Example: Circuit Transformations

Stage 3

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

A pipeline processes data in stages

Data is processed in parallel – as in an
assembly line

Formal model:

L1 = f(I)

L2 = L1

L3 = k(g(L1))

L4 = h(L1)

L5 = c(L2) ?L3 : l(L4)

Decision Procedures – Equalities and Uninterpreted Functions 12

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

The maximum clock frequency depends
on the longest path between two latches

Note that the output of g is used as input
to k

We want to speed up the design by
postponing k to the third stage

Also note that the circuit only uses one of
L3 or L4, never both

⇒ We can remove one of the latches

Decision Procedures – Equalities and Uninterpreted Functions 13

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

The maximum clock frequency depends
on the longest path between two latches

Note that the output of g is used as input
to k

We want to speed up the design by
postponing k to the third stage

Also note that the circuit only uses one of
L3 or L4, never both

⇒ We can remove one of the latches

Decision Procedures – Equalities and Uninterpreted Functions 13

Example: Circuit Transformations

1 0

L5

F

L2

L1

H

K

G

L3 L4

in

C D

==
??

1 0

1 0

in

F

L′
2

L′
1

GC

K

L′
3

H

L′
5

D

Decision Procedures – Equalities and Uninterpreted Functions 14

Example: Circuit Transformations

L1 = f(I)

L2 = L1

L3 = k(g(L1))

L4 = h(L1)

L5 = c(L2) ?L3 : l(L4)

L′
1 = f(I)

L′
2 = c(L′

1)

L′
3 = c(L′

1) ? g(L′
1) : h(L′

1)

L′
5 = L′

2 ? k(L′
3) : l(L′

3)

L5
?
= L′

5

Equivalence in this case holds regardless of the actual
functions

Conclusion: can be decided using Equality Logic and
Uninterpreted Functions

Decision Procedures – Equalities and Uninterpreted Functions 15

Example: Circuit Transformations

L1 = f(I)

L2 = L1

L3 = k(g(L1))

L4 = h(L1)

L5 = c(L2) ?L3 : l(L4)

L′
1 = f(I)

L′
2 = c(L′

1)

L′
3 = c(L′

1) ? g(L′
1) : h(L′

1)

L′
5 = L′

2 ? k(L′
3) : l(L′

3)

L5
?
= L′

5

Equivalence in this case holds regardless of the actual
functions

Conclusion: can be decided using Equality Logic and
Uninterpreted Functions

Decision Procedures – Equalities and Uninterpreted Functions 15

Transforming UFs to Equality Logic using Ackermann’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F2(F1(x)) = 0

2. Replace each function in-
stance with a new variable

- f2 = 0

3. Add functional consistency
constraint to ϕUF for every
pair of instances of the same
function.

- ((x = f1) −→ (f2 = f1))
−→ f2 = 0

Decision Procedures – Equalities and Uninterpreted Functions 16

Transforming UFs to Equality Logic using Ackermann’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F2(

f1︷ ︸︸ ︷
F1(x))︸ ︷︷ ︸
f2

= 0

2. Replace each function in-
stance with a new variable

- f2 = 0

3. Add functional consistency
constraint to ϕUF for every
pair of instances of the same
function.

- ((x = f1) −→ (f2 = f1))
−→ f2 = 0

Decision Procedures – Equalities and Uninterpreted Functions 16

Transforming UFs to Equality Logic using Ackermann’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F2(

f1︷ ︸︸ ︷
F1(x))︸ ︷︷ ︸
f2

= 0

2. Replace each function in-
stance with a new variable

- f2 = 0

3. Add functional consistency
constraint to ϕUF for every
pair of instances of the same
function.

- ((x = f1) −→ (f2 = f1))
−→ f2 = 0

Decision Procedures – Equalities and Uninterpreted Functions 16

Ackermann’s reduction: Example

Suppose we want to check

x1 6= x2 ∨ F (x1) = F (x2) ∨ F (x1) 6= F (x3)

for validity.

1 First number the function instances:

x1 6= x2 ∨ F1(x1) = F2(x2) ∨ F1(x1) 6= F3(x3)

2 Replace each function with a new variable:

x1 6= x2 ∨ f1 = f2 ∨ f1 6= f3

3 Add functional consistency constraints: (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

 →

((x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3))

Decision Procedures – Equalities and Uninterpreted Functions 17

Ackermann’s reduction: Example

Suppose we want to check

x1 6= x2 ∨ F (x1) = F (x2) ∨ F (x1) 6= F (x3)

for validity.

1 First number the function instances:

x1 6= x2 ∨ F1(x1) = F2(x2) ∨ F1(x1) 6= F3(x3)

2 Replace each function with a new variable:

x1 6= x2 ∨ f1 = f2 ∨ f1 6= f3

3 Add functional consistency constraints: (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

 →

((x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3))

Decision Procedures – Equalities and Uninterpreted Functions 17

Ackermann’s reduction: Example

Suppose we want to check

x1 6= x2 ∨ F (x1) = F (x2) ∨ F (x1) 6= F (x3)

for validity.

1 First number the function instances:

x1 6= x2 ∨ F1(x1) = F2(x2) ∨ F1(x1) 6= F3(x3)

2 Replace each function with a new variable:

x1 6= x2 ∨ f1 = f2 ∨ f1 6= f3

3 Add functional consistency constraints: (x1 = x2 → f1 = f2) ∧
(x1 = x3 → f1 = f3) ∧
(x2 = x3 → f2 = f3)

 →

((x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3))
Decision Procedures – Equalities and Uninterpreted Functions 17

Transforming UFs to Equality Logic using Bryant’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F1(a) = F2(b)

2. Replace each function instance
Fi with an expression F ∗

i

- F ∗
1 = F ∗

2

F ∗
i :=


case x1 = xi : f1

x2 = xi : f2

...
xi−1 = xi: fi−1

true : fi

 - f1 =

(
case a = b: f1

true : f2

)

Decision Procedures – Equalities and Uninterpreted Functions 18

Transforming UFs to Equality Logic using Bryant’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F1(a) = F2(b)

2. Replace each function instance
Fi with an expression F ∗

i

- F ∗
1 = F ∗

2

F ∗
i :=


case x1 = xi : f1

x2 = xi : f2

...
xi−1 = xi: fi−1

true : fi

 - f1 =

(
case a = b: f1

true : f2

)

Decision Procedures – Equalities and Uninterpreted Functions 18

Transforming UFs to Equality Logic using Bryant’s reduction

Given: a formula ϕUF with uninterpreted functions

For each function in ϕUF :

1. Number function instances
(from the inside out)

- F1(a) = F2(b)

2. Replace each function instance
Fi with an expression F ∗

i

- F ∗
1 = F ∗

2

F ∗
i :=


case x1 = xi : f1

x2 = xi : f2

...
xi−1 = xi: fi−1

true : fi

 - f1 =

(
case a = b: f1

true : f2

)

Decision Procedures – Equalities and Uninterpreted Functions 18

Example of Bryant’s reduction

Original formula:

a = b → F (G(a) = F (G(b))

Number the instances:

a = b → F1(G1(a) = F2(G2(b))

Replace each function application with an expression:

a = b → F ∗
1 = F ∗

2

where
F ∗

1 = f1

F ∗
2 =

(
case G∗

1 = G∗
2 : f1

true : f2

)
G∗

1 = g1

G∗
2 =

(
case a = b : g1

true : g2

)

Decision Procedures – Equalities and Uninterpreted Functions 19

Example of Bryant’s reduction

Original formula:

a = b → F (G(a) = F (G(b))

Number the instances:

a = b → F1(G1(a) = F2(G2(b))

Replace each function application with an expression:

a = b → F ∗
1 = F ∗

2

where
F ∗

1 = f1

F ∗
2 =

(
case G∗

1 = G∗
2 : f1

true : f2

)
G∗

1 = g1

G∗
2 =

(
case a = b : g1

true : g2

)

Decision Procedures – Equalities and Uninterpreted Functions 19

Example of Bryant’s reduction

Original formula:

a = b → F (G(a) = F (G(b))

Number the instances:

a = b → F1(G1(a) = F2(G2(b))

Replace each function application with an expression:

a = b → F ∗
1 = F ∗

2

where
F ∗

1 = f1

F ∗
2 =

(
case G∗

1 = G∗
2 : f1

true : f2

)
G∗

1 = g1

G∗
2 =

(
case a = b : g1

true : g2

)
Decision Procedures – Equalities and Uninterpreted Functions 19

Using uninterpreted functions in proofs

Uninterpreted functions give us the ability to represent an
abstract view of functions.

It over-approximates the concrete system.
1 + 1 = 1 is a contradiction

But
F (1, 1) = 1 is satisfiable!

Conclusion: unless we are careful, we can give wrong answers,
and this way, loose soundness.

Decision Procedures – Equalities and Uninterpreted Functions 20

Using uninterpreted functions in proofs

Uninterpreted functions give us the ability to represent an
abstract view of functions.

It over-approximates the concrete system.
1 + 1 = 1 is a contradiction

But
F (1, 1) = 1 is satisfiable!

Conclusion: unless we are careful, we can give wrong answers,
and this way, loose soundness.

Decision Procedures – Equalities and Uninterpreted Functions 20

Using uninterpreted functions in proofs

In general, a sound but incomplete method is more useful
than an unsound but complete method.

A sound but incomplete algorithm for deciding a formula with
uninterpreted functions ϕUF :

1 Transform it into Equality Logic formula ϕE

2 If ϕE is unsatisfiable, return ’Unsatisfiable’
3 Else return ’Don’t know’

Decision Procedures – Equalities and Uninterpreted Functions 21

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables
(or at least simplifies) a mechanical proof.

So when is the abstract view sufficient?

Decision Procedures – Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables
(or at least simplifies) a mechanical proof.

So when is the abstract view sufficient?

Decision Procedures – Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables
(or at least simplifies) a mechanical proof.

So when is the abstract view sufficient?

Decision Procedures – Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

Question #1: is this useful?

Question #2: can it be made complete in some cases?

When the abstract view is sufficient for the proof, it enables
(or at least simplifies) a mechanical proof.

So when is the abstract view sufficient?

Decision Procedures – Equalities and Uninterpreted Functions 22

Using uninterpreted functions in proofs

(common) Proving equivalence between:

Two versions of a hardware design (one with and one without
a pipeline)
Source and target of a compiler (”Translation Validation”)

(rare) Proving properties that do not rely on the exact
functionality of some of the functions

Decision Procedures – Equalities and Uninterpreted Functions 23

Using uninterpreted functions in proofs

(common) Proving equivalence between:

Two versions of a hardware design (one with and one without
a pipeline)
Source and target of a compiler (”Translation Validation”)

(rare) Proving properties that do not rely on the exact
functionality of some of the functions

Decision Procedures – Equalities and Uninterpreted Functions 23

Example: Translation Validation

Assume the source program has the statement

z = (x1 + y1) · (x2 + y2);

which the compiler turned into:

u1 = x1 + y1;
u2 = x2 + y2;
z = u1 · u2;

We need to prove that:

(u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z = u1 · u2)
−→ (z = (x1 + y1) · (x2 + y2))

Decision Procedures – Equalities and Uninterpreted Functions 24

Example: Translation Validation

Assume the source program has the statement

z = (x1 + y1) · (x2 + y2);

which the compiler turned into:

u1 = x1 + y1;
u2 = x2 + y2;
z = u1 · u2;

We need to prove that:

(u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z = u1 · u2)
−→ (z = (x1 + y1) · (x2 + y2))

Decision Procedures – Equalities and Uninterpreted Functions 24

Example: Translation Validation

Claim: ϕUF is valid

We will prove this by reducing it to an Equality Logic formula

ϕE =

 (x1 = x2 ∧ y1 = y2 −→ f1 = f2) ∧
(u1 = f1 ∧ u2 = f2 −→ g1 = g2)

 −→

((u1 = f1 ∧ u2 = f2 ∧ z = g1) −→ z = g2)

Decision Procedures – Equalities and Uninterpreted Functions 25

Uninterpreted functions: usability

Good: each function on the left can be mapped to a function
on the right with equivalent arguments

Bad: almost all other cases

Example:

Left Right

x + x 2x

Decision Procedures – Equalities and Uninterpreted Functions 26

Uninterpreted functions: usability

Good: each function on the left can be mapped to a function
on the right with equivalent arguments

Bad: almost all other cases

Example:

Left Right

x + x 2x

Decision Procedures – Equalities and Uninterpreted Functions 26

Uninterpreted functions: usability

This is easy to prove:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = x2 + y2)

This requires commutativity:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = y2 + x2)

Fix by adding:

(x1 + y1 = y1 + x1) ∧ (x2 + y2 = y2 + x2)

What about other cases?
Use more rewriting rules!

Decision Procedures – Equalities and Uninterpreted Functions 27

Uninterpreted functions: usability

This is easy to prove:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = x2 + y2)

This requires commutativity:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = y2 + x2)

Fix by adding:

(x1 + y1 = y1 + x1) ∧ (x2 + y2 = y2 + x2)

What about other cases?
Use more rewriting rules!

Decision Procedures – Equalities and Uninterpreted Functions 27

Uninterpreted functions: usability

This is easy to prove:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = x2 + y2)

This requires commutativity:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = y2 + x2)

Fix by adding:

(x1 + y1 = y1 + x1) ∧ (x2 + y2 = y2 + x2)

What about other cases?
Use more rewriting rules!

Decision Procedures – Equalities and Uninterpreted Functions 27

Uninterpreted functions: usability

This is easy to prove:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = x2 + y2)

This requires commutativity:

(x1 = x2 ∧ y1 = y2) −→ (x1 + y1 = y2 + x2)

Fix by adding:

(x1 + y1 = y1 + x1) ∧ (x2 + y2 = y2 + x2)

What about other cases?
Use more rewriting rules!

Decision Procedures – Equalities and Uninterpreted Functions 27

Example: equivalence of C programs (1/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

These two functions return the same value regardless if it is
’*’ or any other function.

Conclusion: we can prove equivalence by replacing ’*’ with an
uninterpreted function

Decision Procedures – Equalities and Uninterpreted Functions 28

From programs to equations

But first we need to know how to turn programs into
equations.

There are several options – we will see static single
assignment for bounded programs.

Decision Procedures – Equalities and Uninterpreted Functions 29

Static Single Assignment (SSA) form

→ see compiler class

Idea: Rename variables such that each variable
is assigned exactly once

Example:

x=x+y;
x=x*2;

a[i]=100;

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

Read assignments as equalities

Generate constraints by simply conjoining these equalities

Example:

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

x1 = x0 + y0 ∧
x2 = x1 ∗ 2 ∧
a1[i0] = 100

Decision Procedures – Equalities and Uninterpreted Functions 30

Static Single Assignment (SSA) form

→ see compiler class

Idea: Rename variables such that each variable
is assigned exactly once

Example:

x=x+y;
x=x*2;

a[i]=100;

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

Read assignments as equalities

Generate constraints by simply conjoining these equalities

Example:

x1=x0+y0;
x2=x1*2;

a1[i0]=100;

x1 = x0 + y0 ∧
x2 = x1 ∗ 2 ∧
a1[i0] = 100

Decision Procedures – Equalities and Uninterpreted Functions 30

SSA for bounded programs

What about if? Branches are handled using φ-nodes.

int main() {
int x, y, z;

y=8;

if(x)
y--;

else
y++;

z=y+1;
}

int main() {
int x, y, z;

y1=8;

if(x0)
y2=y1-1;

else
y3=y1+1;

y4=φ(y2, y3);

z1=y4+1;
}

y1 = 8 ∧
y2 = y1 − 1 ∧
y3 = y1 + 1 ∧
y4 =
(x0 6=0 ? y2 : y3)∧
z1 = y4 + 1

Decision Procedures – Equalities and Uninterpreted Functions 31

SSA for bounded programs

What about if? Branches are handled using φ-nodes.

int main() {
int x, y, z;

y=8;

if(x)
y--;

else
y++;

z=y+1;
}

int main() {
int x, y, z;

y1=8;

if(x0)
y2=y1-1;

else
y3=y1+1;

y4=φ(y2, y3);

z1=y4+1;
}

y1 = 8 ∧
y2 = y1 − 1 ∧
y3 = y1 + 1 ∧
y4 =
(x0 6=0 ? y2 : y3)∧
z1 = y4 + 1

Decision Procedures – Equalities and Uninterpreted Functions 31

SSA for bounded programs

What about if? Branches are handled using φ-nodes.

int main() {
int x, y, z;

y=8;

if(x)
y--;

else
y++;

z=y+1;
}

int main() {
int x, y, z;

y1=8;

if(x0)
y2=y1-1;

else
y3=y1+1;

y4=φ(y2, y3);

z1=y4+1;
}

y1 = 8 ∧
y2 = y1 − 1 ∧
y3 = y1 + 1 ∧
y4 =
(x0 6=0 ? y2 : y3)∧
z1 = y4 + 1

Decision Procedures – Equalities and Uninterpreted Functions 31

SSA for bounded programs

What about loops?
→ We unwind them!

void f(...) {
...
while(cond) {
BODY;

}
...
Remainder;

}

Decision Procedures – Equalities and Uninterpreted Functions 32

SSA for bounded programs

What about loops?
→ We unwind them!

void f(...) {
...
if(cond) {
BODY;
while(cond) {
BODY;

}
}
...
Remainder;

}

Decision Procedures – Equalities and Uninterpreted Functions 32

SSA for bounded programs

What about loops?
→ We unwind them!

void f(...) {
...
if(cond) {
BODY;
if(cond) {
BODY;
while(cond) {
BODY;

}
}

}
...
Remainder;

}

Decision Procedures – Equalities and Uninterpreted Functions 32

SSA for bounded programs

Some caveats:

Unwind how many times?

Must preserve locality of variables declared inside loop

There is a tool available that does this

CBMC – C Bounded Model Checker

Bound is verified using unwinding assertions

Used frequently for embedded software
−→ Bound is a run-time guarantee

Integrated into Eclipse

Decision problem can be exported

Decision Procedures – Equalities and Uninterpreted Functions 33

SSA for bounded programs

Some caveats:

Unwind how many times?

Must preserve locality of variables declared inside loop

There is a tool available that does this

CBMC – C Bounded Model Checker

Bound is verified using unwinding assertions

Used frequently for embedded software
−→ Bound is a run-time guarantee

Integrated into Eclipse

Decision problem can be exported

Decision Procedures – Equalities and Uninterpreted Functions 33

SSA for bounded programs: CBMC

Decision Procedures – Equalities and Uninterpreted Functions 34

Example: equivalence of C programs (2/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

Prove that both functions return the same value:

out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 35

Example: equivalence of C programs (2/4)

int power3(int in) {
out = in;

for(i=0; i<2; i++)
out = out * in;

return out;
}

int power3 new(int in) {
out = (in*in)*in;
return out;

}

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

Prove that both functions return the same value:

out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 35

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

With uninterpreted functions:
out1 = in∧
out2 = F (out1, in)∧
out3 = F (out2, in)

out′1 = F (F (in, in), in)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Decision Procedures – Equalities and Uninterpreted Functions 36

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:
out1 = in∧
out2 = out1 ∗ in∧
out3 = out2 ∗ in

out′1 = (in ∗ in) ∗ in

With uninterpreted functions:
out1 = in∧
out2 = F (out1, in)∧
out3 = F (out2, in)

out′1 = F (F (in, in), in)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Decision Procedures – Equalities and Uninterpreted Functions 36

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition:



(out1 = out2→ f1 = f2) ∧
(out1 = in → f1 = f3) ∧
(out1 = f3 → f1 = f4) ∧
(out2 = in → f2 = f3) ∧
(out2 = f3 → f2 = f3) ∧
(in = f3 → f3 = f4)

 ∧ ϕE
a ∧ ϕE

b

 −→ out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 37

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition:



(out1 = out2→ f1 = f2) ∧
(out1 = in → f1 = f3) ∧
(out1 = f3 → f1 = f4) ∧
(out2 = in → f2 = f3) ∧
(out2 = f3 → f2 = f3) ∧
(in = f3 → f3 = f4)

 ∧ ϕE
a ∧ ϕE

b

 −→ out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 37

Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition:



(out1 = out2→ f1 = f2) ∧
(out1 = in → f1 = f3) ∧
(out1 = f3 → f1 = f4) ∧
(out2 = in → f2 = f3) ∧
(out2 = f3 → f2 = f3) ∧
(in = f3 → f3 = f4)

 ∧ ϕE
a ∧ ϕE

b

 −→ out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 37

Uninterpreted functions: simplifications

Let n be the number of instances of F ()

Both reduction schemes require O(n2) comparisons

This can be the bottleneck of the verification effort

Solution: try to guess the pairing of functions

Still sound: wrong guess can only make a valid formula invalid

Decision Procedures – Equalities and Uninterpreted Functions 38

Uninterpreted functions: simplifications

Let n be the number of instances of F ()

Both reduction schemes require O(n2) comparisons

This can be the bottleneck of the verification effort

Solution: try to guess the pairing of functions

Still sound: wrong guess can only make a valid formula invalid

Decision Procedures – Equalities and Uninterpreted Functions 38

Simplifications (1)

Given x1 = x′
1, x2 = x′

2, x3 = x′
3, prove |= o1 = o2.

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

4 function instances → 6 comparisons

Guess: validity does not rely on f1 = f2 or on f3 = f4

Idea: only enforce functional consistency of pairs (Left,Right).

Decision Procedures – Equalities and Uninterpreted Functions 39

Simplifications (1)

Given x1 = x′
1, x2 = x′

2, x3 = x′
3, prove |= o1 = o2.

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

4 function instances → 6 comparisons

Guess: validity does not rely on f1 = f2 or on f3 = f4

Idea: only enforce functional consistency of pairs (Left,Right).

Decision Procedures – Equalities and Uninterpreted Functions 39

Simplifications (2)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Down to 4 comparisons!

Another guess: equivalence only depends on f1 = f3 and
f2 = f4

Pattern matching may help here

Decision Procedures – Equalities and Uninterpreted Functions 40

Simplifications (2)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Down to 4 comparisons!

Another guess: equivalence only depends on f1 = f3 and
f2 = f4

Pattern matching may help here

Decision Procedures – Equalities and Uninterpreted Functions 40

Simplifications (3)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Match according
to patterns
(’signatures’)

+

�
�	

@
@R

v ·
�

�	
@

@R
v v

f1, f3

+

�
�	

@
@R

v 5

f2, f4Down to 2 comparisons!

Decision Procedures – Equalities and Uninterpreted Functions 41

Simplifications (4)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Substitute
intermediate
variables (in the
example: a, b)

+

�
�	

@
@R

v ·
�

�	
@

@R
v v
?

+
�

�	
@

@R
v 5

X
−→

+

�
�	

@
@R

v ·
�

�	
@

@R
v+

�
�	

@
@R

v 5

f1, f3

Decision Procedures – Equalities and Uninterpreted Functions 42

Simplifications (4)

o1 = (x1 + (a · x2)︸ ︷︷ ︸
f1

) ∧ a = x3 + 5︸ ︷︷ ︸
f2

Left

o2 = (x′
1 + (b · x′

2)︸ ︷︷ ︸
f3

) ∧ b = x′
3 + 5︸ ︷︷ ︸
f4

Right

Substitute
intermediate
variables (in the
example: a, b)

+

�
�	

@
@R

v ·
�

�	
@

@R
v v
?

+
�

�	
@

@R
v 5

X
−→

+

�
�	

@
@R

v ·
�

�	
@

@R
v+

�
�	

@
@R

v 5

f1, f3

Decision Procedures – Equalities and Uninterpreted Functions 42

The SSA example revisited (1)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Map F1 to F3:

F
�

�	
@

@R
v v

Map F2 to F4:

F
�

�	
@

@R
v F

�
�	

@
@R

v v

Decision Procedures – Equalities and Uninterpreted Functions 43

The SSA example revisited (1)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Map F1 to F3:

F
�

�	
@

@R
v v

Map F2 to F4:

F
�

�	
@

@R
v F

�
�	

@
@R

v v

Decision Procedures – Equalities and Uninterpreted Functions 43

The SSA example revisited (2)

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Ackermann’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 = f4

The verification condition has shrunk:[(
(out1 = in −→ f1 = f3) ∧
(out2 = f3 −→ f2 = f4)

)
∧ ϕE

a ∧ ϕE
b

]
−→ out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 44

Same example with Bryant’s reduction

With numbered uninterpreted functions:
out1 = in∧
out2 = F1(out1, in)∧
out3 = F2(out2, in)

out′1 = F4(F3(in, in), in)

Bryant’s reduction:

ϕE
a :

out1 = in∧
out2 = f1 ∧
out3 = f2

ϕE
b : out′1 =(

case

„
case in = out1: f1

true : f3

«
= out2: f2

true : f4

)
The verification condition:

(ϕE
a ∧ ϕE

b) −→ out3 = out′1

Decision Procedures – Equalities and Uninterpreted Functions 45

So is Equality Logic with UFs interesting?

1 It is expressible enough to state
something interesting.

2 It is decidable and more efficiently
solvable than richer logics, for example in
which some functions are interpreted.

3 Models which rely on infinite-type
variables are expressed more naturally in
this logic in comparison with
Propositional Logic.

Decision Procedures – Equalities and Uninterpreted Functions 46

	Introduction to Equality Logic
	Definition, complexity

	Reducing uninterpreted functions to Equality Logic
	Using uninterpreted functions in proofs
	Simplifications

