
Automated Unit Testing of Large
Industrial Embedded Software using

Concolic Testing

Yunho Kim, Moonzoo Kim
SW Testing & Verification Group

KAIST, South Korea

Youil Kim, Taeksu Kim,
Gunwoo Lee, Yoonkyu Jang

Samsung Electronics, South Korea

http://swtv.kaist.ac.kr

Strong IT Industry in South Korea

Yunho Kim
SWTV Group/232 Automated Unit Testing of Large Industrial

Embedded Software using Concolic Testing

Time-to-
Market?

SW
Quality?

V.S

Summary of the Talk

Yunho Kim
SWTV Group/233

• Embedded SW is becoming larger and more complex
– Ex. Android: 12 MLOC, Tizen > 6 MLOC

• Smartphone development period is very short
– No time to manually test smartphones sufficiently

• Solution: Automated unit test generation for industrial embedded
SW using CONBOL (CONcrete and symBOLic testing)
– CONBOL automatically generates unit-test driver/stubs
– CONBOL automatically generates test cases using concolic testing
– CONBOL targets crash bugs (i.e. null pointer dereference, etc.)

• CONBOL detected 24 crash bugs in 4 MLOC Android SW in 16 hours

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Contents

Yunho Kim
SWTV Group/234

• Motivation
• Background on concolic testing
• Overview of CONBOL

– Unit test driver/stub generator
– Pre-processor module

• Real-world application: Project S on Samsung
smartphones

• Lessons learned and conclusion

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Motivation

Yunho Kim
SWTV Group/235

• Manual testing of SW is often ineffective and
inefficient
– Ineffectiveness: SW bugs usually exist in corner

cases that are difficult to expect
– Inefficiency: It is hard to generate a sufficient #

of test cases in a given amount of project time
• For consumer electronics, these limitations

become more threatening
– Complex control logic
– Large software size
– Short development time
– Testing platform limitation

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Concolic Testing

Yunho Kim
SWTV Group/236

• Combine concrete execution and symbolic execution
– Concrete + Symbolic = Concolic

• In a nutshell, concrete execution over a concrete input
guides symbolic execution
– Symbolic execution is performed along with a concrete

execution path

• Automated test case generation technique
– Execute a target program on automatically generated test inputs
– All possible execution paths are to be explored
– Higher branch coverage than random testing

Industrial Application of Concolic Testing Approach:
A Case Study on libexif by using CREST-BV and KLEE

Industrial Experience w/ Concolic Testing

Yunho Kim
SWTV Group/237

Target platform: Samsung smartphone platforms

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Testing
Level

Target
Programs

Results Publication

Unit-
testing

Busybox ls Detected 4 bugs and covered 98% of
branches

Kim et al.
[ICST12]

Samsung
security library

Detected 1 memory bug and covered
73% of branches

Kim et al.
[ICST12]

System-
testing

Samsung Linux
Platform (SLP)
file manager

Detected 1 infinite loop bug and
covered 20% of branches

Kim et al.
[FSE11]

10 Busybox
utilities

Detected 1 bug in grep and covered
80% of branches

Libexif Detected 6 bugs including 2 security
bugs registered in Common
Vulnerabilities and Exposures, and
covered 43% of branches

Kim et al.
[ICSE12]

Obstacles of Concolic Testing
for Industrial Embedded SW

Yunho Kim
SWTV Group/238

1. Each execution path can be very long, which
causes a huge state space to analyze
– Generating and running test cases on embedded

platforms would take significant amount of time

2. Porting of a concolic testing tool to a target
embedded OS can be difficult
– Due to resource constraint of embedded platforms

3. Embedded SW often uses target-specific
compiler extensions

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Solutions of CONBOL

Yunho Kim
SWTV Group/239

1. Automatically generate unit tests including
test drivers/stubs
– We can apply concolic testing on industrial

embedded SW that has 4 MLOC

2. Test embedded SW on a host PC
– Most unit functions can run on a host PC

• Only a few unit functions are tightly coupled with target
embedded platforms

3. Port target-specific compiler extensions to
GCC compatible ones

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Overview of CONBOL

Yunho Kim
SWTV Group/2310

• We have developed the CONcrete and symBOLic
(CONBOL) framework: an automated concolic unit
testing tool based-on CREST-BV for embedded SW

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Instru-
mentor

Unit test
driver/stub
generator

Pre-
processor
Module

Target
source code

for embedded
platform

GCC
compatible
source code

CREST-BVPorting
Module

Defect/Coverage
Report

Instru-
mented

code

Unit test
driver+stub

code

Symbolic
LibraryCREST-BV

extension
New

module
External

tool

Legend

Porting Module

Yunho Kim
SWTV Group/2311

• The porting module automatically modifies the
source code of unit functions so that the code can be
compiled and executed at the host PC
1. The porting module removes unportable functions

• Inline ARM assembly code, hardware dependent code,
unportable RVCT(RealView Compilation Tools) extensions

2. The porting module translates target code to be
compatible with GCC and CIL(C Intermediate Language)
which is an instrumentation tool

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

RVCT Translation for GCC

__asm {…} Not Portable

__swi (0x01) Not Portable

__align(8) __attribute__((aligned(8)))

__packed __attribute__((packed))

Unit Test Driver/Stub Generator(1/2)

Yunho Kim
SWTV Group/2312

• The unit test driver/stub generator automatically
generates unit test driver/stub functions for unit
testing of a target function
– A unit test driver symbolically sets all visible global variables

and parameters of the target function

– The test driver/stub generator replaces sub-functions
invoked by the target function with symbolic stub functions

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Type Description Code Example

Primitive set a corresponding symbolic value int a;
SYM_int(a);

Array set a fixed number of elements int a[3];
SYM_int(a[0]); … SYM_int(a[2]);

Structure set NULL to all pointer fields and set symbolic
value to all primitive fields

struct _st{int n,struct _st*p}a;
SYM_int(a.n);
a.p=NULL;

Pointer allocate memory for a pointee and set a symbolic
value of corresponding type of the pointee

int *a;
a = malloc(sizeof(int));
SYM_int(*a);

Unit Test Driver/Stub Generator(2/2)

Yunho Kim
SWTV Group/2313

• Example of an automatically generated unit-test driver

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

01:typedef struct Node_{
02: char c;
03: struct Node_ *next;
04:} Node;
05:Node *head;
06:// Target unit-under-test
07:void add_last(char v){
08: // add a new node containing v
09: // to the end of the linked list
10: ...}
11:// Test driver for the target unit
12:void test_add_last(){
13: char v1;
14: head = malloc(sizeof(Node));
15: SYM_char(head->c);
16: head->next = NULL;
17: SYM_char(v1);
18: add_last(v1); }

Unit Test Driver

Generate symbolic inputs
for global variables and a

parameter

Call target function

Set global
variables

Set parameter

Pre-processor Module

Yunho Kim
SWTV Group/2314

• The pre-processor module inserts probes for
three heuristics to improve bug detection
precision
1. assert()insertion to detect more bugs
2. Scoring of alarms to reduce false alarms
3. Pre-conditions insertion to reduce false alarms

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Unit-testing Strategy to Reduce False Alarms

Yunho Kim
SWTV Group/2315

• CONBOL raises a false NPD alarm because ctx(line 6) is not
correctly initialized by init_ctx()(line 8)
– init_ctx() is replaced with a symbolic stub function

• We are developing a technique to automatically identify sub-
functions that should not be replaced with stub functions

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

01:int init_ctx(struct CONTEXT &ctx){
02: ctx.f = malloc(…);
03: …
04: return 0;}
05:void f(){
06: struct CONTEXT ctx;
07: int ret;
08: ret = init_ctx(&ctx);
09: if (ret == -1){
10: return;}
11: if (ctx.f[1] > 0){
12: /* Some code */
13: }
14:}

A false NPD alarm is raised at line 11
because ctx is not properly initialized

init_ctx() is replaced with a
symbolic stub that does not initialize
ctx

Inserting assert() Statements

Yunho Kim
SWTV Group/2316

• The pre-processor module automatically inserts
assert()to cause and detect the following three
types of run-time failures
– Out-of-bound memory access bugs(OOB)

• Insert assert(0<=idx && idx<size) right before
array access operations

– Divide-by-zero bugs(DBZ)
• Insert assert(denominator!=0) right before

division operators whose denominator is not constant
– Null-pointer-dereference bugs(NPD)

• Insert assert(ptr!=NULL) right before pointer
dereference operations

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Scoring of Alarms (1/2)

Yunho Kim
SWTV Group/2317

• CONBOL assigns a score to each alarm as follows:
1. Every violated assertion(i.e., alarm) gets 5 as a default score.
2. The score of the violated assertion increases by 1 if the assertions

contains a variable x which is checked in the target function containing
the assertion (e.g., if(x<y+1)...)

• An explicit check of x indicates that the developer considers x
important, and the assertion on x is important consequently.

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

01: void f(int x, int y){
02: int array[10];
03: if (x < 15){
04: assert(x<10);
05: array[x]++;
06: assert(y<10);
07: array[y]++;
08:}}

No Type Location Assert
Expression

Score

1 OOB src.c:f():4 x<10 6(=5+1)

2 OOB src.c:f():6 y<10 5

Scoring of Alarms (2/2)

Yunho Kim
SWTV Group/2318

3. For each violated assertion assert(expr), the score of the assertion
decreases by 1, if expr appears five or more times in other violated
assertions in the entire target software.

• Developers write code correctly most of the time: target code that is
repeated frequently is not likely to be buggy

• CONBOL reports alarms whose scores are 6 or above

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

No Type Location Assert Expression Score
1 OOB src.c:f():1287 A.index - 1 >= 0 4(=5-1)
2 OOB src.c:g():1300 A.index - 1 >= 0 4(=5-1)
3 OOB src.c:h():1313 A.index - 1 >= 0 4(=5-1)
4 OOB src.c:x():1326 A.index - 1 >= 0 4(=5-1)
5 OOB src.c:y():1339 A.index - 1 >= 0 4(=5-1)

Inserting Constraints to Satisfy Pre-conditions

Yunho Kim
SWTV Group/2319

• The pre-processor module automatically inserts
assume() to avoid false alarms due to violation of
implicit pre-conditions
– Pre-conditions for array indexes

• Insert array pre-conditions if the target function does not check an
array index variable

– Pre-conditions for constant parameters
• Insert constant parameter pre-conditions if the parameter of the

target function is one of some constant values for all invocations
– Ex.) the third parameter of fseek() should be one of SEEK_SET,

SEEK_CUR, or SEEK_END

– Pre-conditions for enum values
• CONBOL considers an enum type as a special int type and generates

concrete test cases defined in the corresponding the enum type
Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Inserting Constraints to Satisfy Pre-conditions(1/3)

Yunho Kim
SWTV Group/2320

• An automatically generated unit test driver can violate
implicit pre-conditions of a target unit function
– Violation of implicit pre-conditions raises false alarms

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

01:int array[10];
02:void get_ith_element(int i){
03: return array[i];
04:}
05:// Test driver for get_ith_element()
06:void test_get_ith_element(){
07: int i, idx;
08: for(i=0; i<10; i++){
09: SYM_int(array[i]);
10: }
11: SYM_int(idx);
12:
13: get_ith_element(idx);
14:}

Line 3 can raise an OOB alarm
because i can be greater than or
equal to 10

However, developers often assume that
get_ith_element() is always called
under a pre-condition (0<=i && i<10)

Inserting Constraints to Satisfy Pre-conditions(3/3)

Yunho Kim
SWTV Group/2321

• An example of pre-conditions for array index

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

01:int array[10];
02:void get_ith_element(int i){
03: return array[i];
04:}
05:// Test driver for get_ith_element()
06:void test_get_ith_element(){
07: int i, idx;
08: for(i=0; i<10; i++){
09: SYM_int(array[i]);
10: }
11: SYM_int(idx);
12: assume(0<=idx && idx<10);
13: get_ith_element(idx);
14:}

assume(expr) enforces
symbolic values to satisfy expr

Developers assume that callers of
get_ith_element() performs sanity
checking of the parameter before they
invoke get_ith_element()

Statistics of Project S

Yunho Kim
SWTV Group/2322

• Project S, our target program, is an industrial
embedded software for smartphones developed by
Samsung Electronics
– Project S targets ARM platforms

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Metric Data

Total lines of code About 4,000,000

of branches 397,854

of
functions

Total 48,743

Having more
than one branch

29,324

of files Sources 7,243

Headers 10,401

Test Experiment Setting

Yunho Kim
SWTV Group/2323

• CONBOL uses a DFS strategy used by CREST-BV in Kim et al.
[ICSE12 SEIP]

• Termination criteria and timeout setting
– Concolic unit testing of a target function terminates when

• CONBOL detect a violation of an assertion, or
• All possible execution paths are explored, or
• Concolic unit testing spends 30 seconds (Timeout1)

– In addition, a single test execution of a target unit should not spend
more than 15 seconds (Timeout2)

• HW setting
– Intel i5 3570K @ 3.4 GHz, 4GB RAM running Debian Linux 6.0.4 32bit

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Results (1/2)

Yunho Kim SWTV
Group/2324

• Results of branch coverage and time cost
– CONBOL tested 86.7%(=25,425) of target functions on a host PC

• 13.3% of functions were not inherently portable to a host PC due to
inline ARM assembly, direct memory access, etc

– CONBOL covered 59.6% of branches in 15.8 hours

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Statistics Number

Total # of test cases generated About
800,000

Branch coverage (%) 59.6

Execution time (hour) 15.8

of functions reaching timtout1 (30s) 742

of functions reaching timtout2 (15s) 134

Execution time w/o timeout (hour) 9.0

Results (2/2)

Yunho Kim
SWTV Group/2325

• CONBOL raised 277 alarms
• 2 Samsung engineers (w/o prior knowledge on the target program) took 1

week to remove 227 false alarms out of 277 alarms
– We reported 50 alarms and 24 crash bugs were confirmed by the

developers of Project S
• Pre-conditions and scoring rules filtered out 14.1% and 81.2% of likely false

alarms, respectively
• Note that Coverity prevent could not detect any of these crash bugs

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

of reported alarms Out-of-bound NULL-pointer-
dereference

Divide-by-zero Total

of
alarms

Ratio
(%)

of
alarms

Ratio
(%)

of
alarms

Ratio
(%)

of
alarms

Ratio
(%)

W/O any heuristics 3235 100.0 2588 100.0 61 100.0 5884 100.0

W/ inserted pre-
conditions

2486 76.8 2511 97.0 58 95.1 5055 85.9

W/ inserted pre-
conditions + scoring rules

220 6.8 42 1.6 15 24.6 277 4.7

Confirmed and fixed bugs 13 0.4 5 0.2 6 9.8 24 0.4

Recognition of Success of CONBOL
at Samsung Electronics

Yunho Kim
SWTV Group/2326

• Bronze Award
at Samsung
Best Paper
Award

• Oct’s Best
Practice Award

Automated Unit Testing of Large Industrial
Embedded Software using Concolic Testing

Lessons Learned

27/57

• Effective and efficient automated concolic unit testing
approach for industrial embedded software
– Detected 24 critical crash bugs in 4 MLOC embedded SW

• Samsung engineers were sensitive to false positives
very much (>10 false/true alarms ratio)
– False alarm reduction techniques are very important

• We have developed a new automated unit testing
platform CONCERT which reduces false alarms by
– Synthesizing realistic target unit contexts based on dynamic

function correlation observed in system testing
– Utilizing common dynamic invariants of various contexts

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Average

CONCERT: 2.4 F/T alarm ratio w/ detecting 84%
of target crash bugs on SIR and SPEC06

0

50

100

150

200

250

300

Fa
ls
e/

tr
ue

 a
la

rm
 r
at

io

SUT CONBOL CONCERT0 CONCERT

Conclusion

Moonzoo Kim
SWTV Group/5729

• Automated concolic testing is effective
and efficient for testing industrial
embedded software including vehicle
domain as well as consumer
electronics domain
– LG electronics introduced the

technique from 2014 (c.f. ICSE SEIP
2015 paper)

– Hyundai motors started to apply the
technique from 2015

• Successful application of automated
testing techniques requires expertise
of human engineers

Traditional testing Concolic testing
• Manual TC gen
• Testing main scenarios
• System-level testing
• Small # of TCs

• Automated TC gen
• Testing exceptional scenarios
• Unit-level testing
• Large # of TCs

SW Reliability

SW
Testing

Cost

25% 50% 75% 100%

Manual
Testing

Automated
Testing

	 Automated Unit Testing of Large Industrial Embedded Software using Concolic Testing
	Strong IT Industry in South Korea
	Summary of the Talk
	Contents
	Motivation
	Concolic Testing
	Industrial Experience w/ Concolic Testing
	Obstacles of Concolic Testing �for Industrial Embedded SW
	Solutions of CONBOL
	Overview of CONBOL
	Porting Module
	Unit Test Driver/Stub Generator(1/2)
	Unit Test Driver/Stub Generator(2/2)
	Pre-processor Module
	Unit-testing Strategy to Reduce False Alarms
	Inserting assert() Statements
	Scoring of Alarms (1/2)
	Scoring of Alarms (2/2)
	Inserting Constraints to Satisfy Pre-conditions
	Inserting Constraints to Satisfy Pre-conditions(1/3)
	Inserting Constraints to Satisfy Pre-conditions(3/3)
	Statistics of Project S
	Test Experiment Setting
	Results (1/2)
	Results (2/2)
	Recognition of Success of CONBOL� at Samsung Electronics
	Lessons Learned
	CONCERT: 2.4 F/T alarm ratio w/ detecting 84% of target crash bugs on SIR and SPEC06
	Conclusion

